题目内容

(本小题满分12分)已知函数f(x)=kx3-3(k+1)x2-2k2+4,若f(x)的单调减区间为(0,4).

(1)求k的值;

(2)对任意的t∈[-1,1],关于x的方程2x2+5x+a=f(t)总有实根,求实数a的取值范围.

 

【答案】

解:(1)f′(x)=3kx2-6(k+1)x,

又∵f′(4)=0,∴k=1.

(2)由(1)得f(x)=x3-6x2+2,

∴f′(t)=3t2-12t.

∵当-1<t<0时,f′(t)>0;当0<t<1时,f′(t)<0,且f(-1)=-5,f(1)=-3,

∴f(t)≥-5.

∵2x2+5x+a≥

 

≤-5,解得a≤-.

 

【解析】略

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网