题目内容
如图,在空间直角坐标系中平面的方程是x+2y+z-2=0,类比点到直线的距离公式,则点P(4,0,4)到平面ABC的距离是________.
(选修4-4:坐标系与参数方程) (本小题满分10分)
在直角坐标系xoy中,直线的参数方程为(t为参数),在极坐标系(与直角坐标系xoy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,圆C的方程为.
(Ⅰ)求圆C的直角坐标方程;
(Ⅱ)设圆C与直线交于点A、B,若点P的坐标为,求|PA|+|PB|.
23(本小题满分10分)
已知三棱锥P-ABC中,PA⊥平面ABC,AB⊥AC,,N为AB上一点,AB=4AN, M、S分别为PB,BC的中点.以A为原点,射线AB,AC,AP分别为x,y,z轴正向建立如图空间直角坐标系.
(Ⅰ)证明:CM⊥SN;
(Ⅱ)求SN与平面CMN所成角的大小.
24.(本小题满分10分)
将一枚硬币连续抛掷次,每次抛掷互不影响. 记正面向上的次数为奇数的概率为,正面向上的次数为偶数的概率为.
(Ⅰ)若该硬币均匀,试求与;
(Ⅱ)若该硬币有暇疵,且每次正面向上的概率为,试比较与的大小.
(Ⅰ)求k的值;
(Ⅱ)求
(文)某村计划建造一个室内面积为800m2的矩形蔬菜温室. 在温室内,种植蔬菜时需要沿左、右两侧与前侧内墙各保留1m宽的空地作为通道,后侧内墙不留空地(如图所示),问当温室的长是多少米时,能使蔬菜的种植面积最大?