题目内容
【题目】已知函数.
(1)求证:当x∈(0,π]时,f(x)<1;
(2)求证:当m>2时,对任意x0∈(0,π] ,存在x1∈(0,π]和x2∈(0,π](x1≠x2)使g(x1)=g(x2)=f(x0)成立.
【答案】(1)证明见解析.(2)证明见解析
【解析】
(1)变换得到,设,求导得到最值得到答案.
(2)只需要求出f(x)在(0,π]上的值域,然后研究g(x)的单调性是先增后减或先减后增,同时说明每一段上的函数值范围都包含f(x)的值域即可.
(1),,即,设,
则,函数单调递减,故,即,得证.
(2)f(π)=0,当时,,故f(x)的值域为[0,1).
又因为g′(x),x∈(0,π],m>2.
令∈(0,1).显然y=mx﹣2是增函数.
∴时,g′(x)<0,g(x)递减;,g′(x)>0,g(x)递增.
此时g(x)min,(m>2).
将上式化简并令r(m)=2lnm﹣m+2﹣2ln2,m>2.
∵,∴r(m)在(2,+∞)上递减.
所以r(m)<r(2)=0,故g(x)min<0.
显然当x→0时,g(x)→+∞,即当时,g(x)递减,
且函数值取值集合包含f(x)的值域[0,1);
而g(π)=(π﹣1)m﹣2lnπ>2(π﹣1)﹣2lnπ=2(π﹣1﹣lnπ)>2(3﹣1﹣lnπ),
∵,∴,
即当x时,g(x)递增,且函数值取值集合包含f(x)的值域[0,1).
所以当m>2时,对任意x0∈(0,π],存在x1∈(0,π]和x2∈(0,π](x1≠x2)
使g(x1)=g(x2)=f(x0)成立.
【题目】自由购是通过自助结算方式购物的一种形式. 某大型超市为调查顾客使用自由购的情况,随机抽取了100人,统计结果整理如下:
20以下 | 70以上 | ||||||
使用人数 | 3 | 12 | 17 | 6 | 4 | 2 | 0 |
未使用人数 | 0 | 0 | 3 | 14 | 36 | 3 | 0 |
(Ⅰ)现随机抽取 1 名顾客,试估计该顾客年龄在且未使用自由购的概率;
(Ⅱ)从被抽取的年龄在使用自由购的顾客中,随机抽取3人进一步了解情况,用表示这3人中年龄在的人数,求随机变量的分布列及数学期望;
(Ⅲ)为鼓励顾客使用自由购,该超市拟对使用自由购的顾客赠送1个环保购物袋.若某日该超市预计有5000人购物,试估计该超市当天至少应准备多少个环保购物袋.
【题目】阿基米德是古希腊伟大的哲学家、数学家、物理学家,对几何学、力学等学科作出过卓越贡献.为调查中学生对这一伟大科学家的了解程度,某调查小组随机抽取了某市的100名高中生,请他们列举阿基米德的成就,把能列举阿基米德成就不少于3项的称为“比较了解”,少于三项的称为“不太了解”.
调查结果如下:
0项 | 1项 | 2项 | 3项 | 4项 | 5项 | 5项以上 | |
理科生(人) | 1 | 10 | 17 | 14 | 14 | 10 | 4 |
文科生(人) | 0 | 8 | 10 | 6 | 3 | 2 | 1 |
(1)完成如下列表,并判断是否由的把握认为.了解阿基米德与选择文理科有关?
比较了解 | 不太了解 | 合计 | |
理科生 | p> | ||
文科生 | |||
合计 |
(2)在抽取的100名高中生中,按照文理科采用分层抽样的方法抽取10人的样本.
(i)求抽取的文科生和理科生的人数;
(ii)从10人的样本中随机抽取两人,求两人都是文科生的概率.
0.100 | 0.050 | 0.010 | 0.001 | |
2.706 | 3.841 | 6.635 | 10.828 |
.
【题目】某校团委对“学生性别与中学生追星是否有关”作了一次调查,利用列联表,由计算得,参照下表:
0.01 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
得到正确结论是( )
A. 有99%以上的把握认为“学生性别与中学生追星无关”
B. 有99%以上的把握认为“学生性别与中学生追星有关”
C. 在犯错误的概率不超过0.5%的前提下,认为“学生性别与中学生追星无关”
D. 在犯错误的概率不超过0.5%的前提下,认为“学生性别与中学生追星有关”
【题目】A、B两种品牌各三种车型2017年7月的销量环比(与2017年6月比较)增长率如下表:
A品牌车型 | A1 | A2 | A3 | ||||
环比增长率 | -7.29% | 10.47% | 14.70% | ||||
B品牌车型 | B1 | B2 | B3 | ||||
环比增长率 | -8.49% | -28.06% | 13.25% | ||||
根据此表中的数据,有如下关于7月份销量的四个结论:①A1车型销量比B1车型销量多;
②A品牌三种车型总销量环比增长率可能大于14.70%;
③B品牌三款车型总销量环比增长率可能为正;
④A品牌三种车型总销量环比增长率可能小于B品牌三种车型总销量环比增长率.
其中正确结论的个数是( )
A. B. C. D.