ÌâÄ¿ÄÚÈÝ
ÒÑÖªº¯Êýf£¨x£©=-x3+ax2+1£¨a¡ÊR£©£®
£¨1£©Èôº¯Êýy=f£¨x£©ÔÚÇø¼ä(0£¬
)ÉϵÝÔö£¬ÔÚÇø¼ä[
£¬+¡Þ£©Éϵݼõ£¬ÇóaµÄÖµ£»
£¨2£©µ±x¡Ê[0£¬1]ʱ£¬É躯Êýy=f£¨x£©Í¼ÏóÉÏÈÎÒâÒ»µã´¦µÄÇÐÏßµÄÇãб½ÇΪ¦È£¬Èô¸ø¶¨³£Êýa¡Ê£¨
£¬+¡Þ£©£¬Çó¦ÈµÄÈ¡Öµ·¶Î§£»
£¨3£©ÔÚ£¨1£©µÄÌõ¼þÏ£¬ÊÇ·ñ´æÔÚʵÊým£¬Ê¹µÃº¯Êýg£¨x£©=x4-5x3+£¨2-m£©x2+1£¨m¡ÊR£©µÄͼÏóÓ뺯Êýy=f£¨x£©µÄͼÏóÇ¡ÓÐÈý¸ö½»µã£®Èô´æÔÚ£¬ÇëÇó³öʵÊýmµÄÖµ£»Èô²»´æÔÚ£¬ÊÔ˵Ã÷ÀíÓÉ£®
£¨1£©Èôº¯Êýy=f£¨x£©ÔÚÇø¼ä(0£¬
2 |
3 |
2 |
3 |
£¨2£©µ±x¡Ê[0£¬1]ʱ£¬É躯Êýy=f£¨x£©Í¼ÏóÉÏÈÎÒâÒ»µã´¦µÄÇÐÏßµÄÇãб½ÇΪ¦È£¬Èô¸ø¶¨³£Êýa¡Ê£¨
3 |
2 |
£¨3£©ÔÚ£¨1£©µÄÌõ¼þÏ£¬ÊÇ·ñ´æÔÚʵÊým£¬Ê¹µÃº¯Êýg£¨x£©=x4-5x3+£¨2-m£©x2+1£¨m¡ÊR£©µÄͼÏóÓ뺯Êýy=f£¨x£©µÄͼÏóÇ¡ÓÐÈý¸ö½»µã£®Èô´æÔÚ£¬ÇëÇó³öʵÊýmµÄÖµ£»Èô²»´æÔÚ£¬ÊÔ˵Ã÷ÀíÓÉ£®
·ÖÎö£º£¨1£©Ç󵼺¯Êý£¬ÀûÓú¯Êýy=f£¨x£©ÔÚÇø¼ä(0£¬
)ÉϵÝÔö£¬ÔÚÇø¼ä[
£¬+¡Þ£©Éϵݼõ£¬¿ÉµÃº¯ÊýÔÚx=
´¦È¡µÃ¼«Öµ£¬¼´f¡ä£¨
£©=0£¬´Ó¶ø¿ÉÇóaµÄÖµ£»
£¨2£©Ç󵼺¯Êý£¬¸ù¾Ýa¡Ê£¨
£¬+¡Þ£©£¬¿ÉÈ·¶¨Ð±Âʵķ¶Î§£¬´Ó¶ø¿ÉÈ·¶¨Çãб½Ç¦ÈµÄÈ¡Öµ·¶Î§£»
£¨3£©ÔÚ£¨1£©µÄÌõ¼þÏ£¬a=1£¬¡°ÒªÊ¹º¯Êýf£¨x£©Óëg£¨x£©=x4-5x3+£¨2-m£©x2+1µÄͼÏóÇ¡ÓÐÈý¸ö½»µã¡±¼´Îª¡°·½³Ìx2£¨x2-4x+1m£©=0Ç¡ÓÐÈý¸ö²»Í¬µÄʵ¸ù¡±£®ÒòΪx=0ÊÇÒ»¸ö¸ù£¬ËùÒÔ·½³Ìx2-4x+1-m=0Ó¦ÓÐÁ½¸ö·ÇÁãµÄ²»µÈʵ¸ù£¬ÔÙÓÃÅбðʽÇó½â£®
2 |
3 |
2 |
3 |
2 |
3 |
2 |
3 |
£¨2£©Ç󵼺¯Êý£¬¸ù¾Ýa¡Ê£¨
3 |
2 |
£¨3£©ÔÚ£¨1£©µÄÌõ¼þÏ£¬a=1£¬¡°ÒªÊ¹º¯Êýf£¨x£©Óëg£¨x£©=x4-5x3+£¨2-m£©x2+1µÄͼÏóÇ¡ÓÐÈý¸ö½»µã¡±¼´Îª¡°·½³Ìx2£¨x2-4x+1m£©=0Ç¡ÓÐÈý¸ö²»Í¬µÄʵ¸ù¡±£®ÒòΪx=0ÊÇÒ»¸ö¸ù£¬ËùÒÔ·½³Ìx2-4x+1-m=0Ó¦ÓÐÁ½¸ö·ÇÁãµÄ²»µÈʵ¸ù£¬ÔÙÓÃÅбðʽÇó½â£®
½â´ð£º½â£ºÓÉÓÚº¯Êýf£¨x£©=-x3+ax2+1£¨a¡ÊR£©£®
Ôòµ¼º¯Êýf¡ä£¨x£©=-3x2+2ax
£¨1£©ÓÉÓÚº¯Êýy=f£¨x£©ÔÚÇø¼ä(0£¬
)ÉϵÝÔö£¬ÔÚÇø¼ä[
£¬+¡Þ£©Éϵݼõ£¬
ÔòµÃº¯ÊýÔÚx=
´¦È¡µÃ¼«Öµ£¬¼´f¡ä£¨
£©=0£¬
Ôò-3¡Á(
)2+2a¡Á
=0£¬½âµÃa=1£®
£¨2£©ÓÉÓÚtan¦È=f¡ä£¨x£©=-3x2+2ax=-3£¨x-
£©2+
£¬
¡ßa¡Ê£¨
£¬+¡Þ£©£¬¡à
¡Ê(
£¬+¡Þ)
¢Ùµ±
¡Ê£¨
£¬1]£¬¼´a¡Ê(
£¬3]ʱ£¬f¡ä(x)max=
£¬f¡ä£¨x£©min=f¡ä£¨0£©=0
¼´0¡Ütan¦È¡Ü
¢Úµ±
¡Ê£¨1£¬+¡Þ£©£¬¼´a¡Ê£¨3£¬+¡Þ£©£¬Ê±£¬f¡ä£¨x£©max=f'£¨1£©=2a-3£¬f¡ä£¨x£©min=f¡ä£¨0£©=0
¼´0¡Ütan¦È¡Ü2a-3
¡ß0¡Ü¦È¡Ü¦Ð£¬¡àµ±a¡Ê(
£¬3]ʱ£¬¦È¡Ê[0£¬arctan
]£»
µ±a¡Ê£¨3£¬+¡Þ£©Ê±£¬¦ÈµÄÈ¡Öµ·¶Î§ÊÇ[0£¬arctan£¨2a-3£©]£®
£¨3£©ÔÚ£¨1£©µÄÌõ¼þÏ£¬a=1£¬
Ҫʹº¯Êýf£¨x£©Óëg£¨x£©=x4-5x3+£¨2-m£©x2+1µÄͼÏóÇ¡ÓÐÈý¸ö½»µã£¬
µÈ¼ÛÓÚ·½³Ì-x3+x2+1=x4-5x3+£¨2-m£©x2+1£¬
¼´·½³Ìx2£¨x2-4x+1-m£©=0Ç¡ÓÐÈý¸ö²»Í¬µÄʵ¸ù£®
¡ßx=0ÊÇÒ»¸ö¸ù£¬
¡àӦʹ·½³Ìx2-4x+1-m=0ÓÐÁ½¸ö·ÇÁãµÄ²»µÈʵ¸ù£¬
ÓÉ¡÷=16-4£¨1-m£©£¾0£¬1-m¡Ù0£¬½âµÃm£¾-3£¬m¡Ù1
¡à´æÔÚm¡Ê£¨-3£¬1£©¡È£¨1£¬+¡Þ£©£¬
ʹµÃº¯Êýf£¨x£©Óëg£¨x£©=x4-5x3+£¨2-m£©x2+1µÄͼÏóÇ¡ÓÐÈý¸ö½»µã£®
Ôòµ¼º¯Êýf¡ä£¨x£©=-3x2+2ax
£¨1£©ÓÉÓÚº¯Êýy=f£¨x£©ÔÚÇø¼ä(0£¬
2 |
3 |
2 |
3 |
ÔòµÃº¯ÊýÔÚx=
2 |
3 |
2 |
3 |
Ôò-3¡Á(
2 |
3 |
2 |
3 |
£¨2£©ÓÉÓÚtan¦È=f¡ä£¨x£©=-3x2+2ax=-3£¨x-
a |
3 |
a2 |
3 |
¡ßa¡Ê£¨
3 |
2 |
a |
3 |
1 |
2 |
¢Ùµ±
a |
3 |
1 |
2 |
3 |
2 |
a2 |
3 |
¼´0¡Ütan¦È¡Ü
a2 |
3 |
¢Úµ±
a |
3 |
¼´0¡Ütan¦È¡Ü2a-3
¡ß0¡Ü¦È¡Ü¦Ð£¬¡àµ±a¡Ê(
3 |
2 |
a2 |
3 |
µ±a¡Ê£¨3£¬+¡Þ£©Ê±£¬¦ÈµÄÈ¡Öµ·¶Î§ÊÇ[0£¬arctan£¨2a-3£©]£®
£¨3£©ÔÚ£¨1£©µÄÌõ¼þÏ£¬a=1£¬
Ҫʹº¯Êýf£¨x£©Óëg£¨x£©=x4-5x3+£¨2-m£©x2+1µÄͼÏóÇ¡ÓÐÈý¸ö½»µã£¬
µÈ¼ÛÓÚ·½³Ì-x3+x2+1=x4-5x3+£¨2-m£©x2+1£¬
¼´·½³Ìx2£¨x2-4x+1-m£©=0Ç¡ÓÐÈý¸ö²»Í¬µÄʵ¸ù£®
¡ßx=0ÊÇÒ»¸ö¸ù£¬
¡àӦʹ·½³Ìx2-4x+1-m=0ÓÐÁ½¸ö·ÇÁãµÄ²»µÈʵ¸ù£¬
ÓÉ¡÷=16-4£¨1-m£©£¾0£¬1-m¡Ù0£¬½âµÃm£¾-3£¬m¡Ù1
¡à´æÔÚm¡Ê£¨-3£¬1£©¡È£¨1£¬+¡Þ£©£¬
ʹµÃº¯Êýf£¨x£©Óëg£¨x£©=x4-5x3+£¨2-m£©x2+1µÄͼÏóÇ¡ÓÐÈý¸ö½»µã£®
µãÆÀ£º±¾ÌâÖ÷Òª¿¼²éº¯ÊýÓë·½³ÌµÄ×ÛºÏÔËÓã¬Ö÷ÒªÉæ¼°ÁË·½³ÌµÄ¸ùÓ뺯ÊýµÄÁãµã¼äµÄת»¯£®»¹¿¼²éÁ˼ÆËãÄÜÁ¦ºÍ×ÛºÏÔËÓÃ֪ʶµÄÄÜÁ¦£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
ÒÑÖªº¯Êýf£¨x£©=x2-bxµÄͼÏóÔÚµãA£¨1£¬f£¨1£©£©´¦µÄÇÐÏßlÓëÖ±Ïß3x-y+2=0ƽÐУ¬ÈôÊýÁÐ{
}µÄÇ°nÏîºÍΪSn£¬ÔòS2010µÄֵΪ£¨¡¡¡¡£©
1 |
f(n) |
A¡¢
| ||
B¡¢
| ||
C¡¢
| ||
D¡¢
|