题目内容
已知点M是抛物线y2=8x上的动点,F为抛物线的焦点,点A在圆C:(x-3)2+(y+1)2=1上,则|AM|+|MF|的最小值为
4
4
.分析:先根据抛物线方程求得准线方程,过点M作MN⊥准线,垂足为N,根据抛物线定义可得|MN|=|MF|,问题转化为求|MA|+|MN|的最小值,根据A在圆C上,判断出当N,M,C三点共线时,|MA|+|MN|有最小值,进而求得答案.
解答:解:抛物线y2=8x的准线方程为:x=-2
过点M作MN⊥准线,垂足为N
∵点M是抛物线y2=8x的一点,F为抛物线的焦点
∴|MN|=|MF|
∴|MA|+|MF|=|MA|+|MN|
∵A在圆C:(x-3)2+(y+1)2=1,圆心C(3,-1),半径r=1
∴当N,M,C三点共线时,|MA|+|MF|最小
∴(|MA|+|MF|)min=(|MA|+|MN|)min=|CN|-r=5-1=4
∴(|MA|+|MF|)min=4
故答案为:4
过点M作MN⊥准线,垂足为N
∵点M是抛物线y2=8x的一点,F为抛物线的焦点
∴|MN|=|MF|
∴|MA|+|MF|=|MA|+|MN|
∵A在圆C:(x-3)2+(y+1)2=1,圆心C(3,-1),半径r=1
∴当N,M,C三点共线时,|MA|+|MF|最小
∴(|MA|+|MF|)min=(|MA|+|MN|)min=|CN|-r=5-1=4
∴(|MA|+|MF|)min=4
故答案为:4
点评:本题的考点是圆与圆锥曲线的综合,考查抛物线的简单性质,考查距离和的最小.解题的关键是利用化归和转化的思想,将问题转化为当N,M,C三点共线时,|MA|+|MF|最小.

练习册系列答案
相关题目
已知点M是抛物线y2=2px(p>0)位于第一象限部分上的一点,且点M与焦点F的距离|MF|=2p,则点M的坐标为( )
A、(
| ||||
B、(
| ||||
C、(
| ||||
D、(
|