题目内容
在数列{an}中,a1=1,an+1=
,设bn=a2n-2,Sn=|b1|+|b2|+…+|bn|.
(1)求数列{bn}的通项公式;
(2)若Tn=a1+a2+a3+…+a2n+a2n+1,试比较Sn与Tn的大小.
|
(1)求数列{bn}的通项公式;
(2)若Tn=a1+a2+a3+…+a2n+a2n+1,试比较Sn与Tn的大小.
分析:(1)a2=
a1+1=1.5,a2n=
a2n-1 +2n-1=
a2n-2+1,由bn=a2n-2,能导出{bn}的通项公式.
(2)由bn=-
,知Sn=|b1|+|b2|+…+|bn|=
+
+
+…+
=1-
.由a2n+1=a2n-2(2n)=a2n-4n,a2n+a2n+1=2a2n-4n=2(bn+2)-4n=2bn-4(n-1),知Tn=a1+(a2+a3)+…+(a2n+a2n+1)=1+2b1+…+[2bn-4(n-1)]=1+2(b1+b2+…+bn)-4[1+2+…+(n-1)]=
-1-2n(n-1).由此能够导出Sn>Tn.
1 |
2 |
1 |
2 |
1 |
2 |
(2)由bn=-
1 |
2 n |
1 |
2 |
1 |
2 2 |
1 |
2 3 |
1 |
2 n |
1 |
2 n |
1 |
2n-1 |
解答:解:(1)a2=
a1+1=1.5,a2n=
a2n-1 +2n-1=
[a2n-2-2(2n-2)]+2n-1=
a2n-2+1,∵bn=a2n-2,
∴b1=a2-2=1.5-2=-0.5,
bn-1=a2n-2-2,即a2n-2=cn-1+2
bn=a2n-2=
a2n-2+1-2
=
(bn-1+2)+1-2
=
bn-1,
所以{bn}是首项为b1=-0.5,公比为q=
的等比数列其通项公式为bn=-0.5•(
)n-1=-
.
(2)∵bn=-
,
∴Sn=|b1|+|b2|+…+|bn|
=
+
+
+…+
=
=1-
.∵a2n+1=a2n-2(2n)=a2n-4n,a2n+a2n+1=2a2n-4n=2(bn+2)-4n=2bn-4(n-1),∴Tn=a1+a2+a3+…+a2n+a2n+1=a1+(a2+a3)+…+(a2n+a2n+1)=1+2b1+…+[2bn-4(n-1)]=1+2(b1+b2+…+bn)-4[1+2+…+(n-1)]=1+2×
-2n(n-1)=1+
-2-2n(n-1)=
-1-2n(n-1).
∴Sn>Tn.
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
∴b1=a2-2=1.5-2=-0.5,
bn-1=a2n-2-2,即a2n-2=cn-1+2
bn=a2n-2=
1 |
2 |
=
1 |
2 |
=
1 |
2 |
所以{bn}是首项为b1=-0.5,公比为q=
1 |
2 |
1 |
2 |
1 |
2 n |
(2)∵bn=-
1 |
2 n |
∴Sn=|b1|+|b2|+…+|bn|
=
1 |
2 |
1 |
2 2 |
1 |
2 3 |
1 |
2 n |
=
| ||||
1-
|
=1-
1 |
2 n |
-
| ||||
1-
|
2 |
2n |
1 |
2n-1 |
∴Sn>Tn.
点评:本题考查数列的综合运用,解题时要认真审题,仔细解答,注意挖掘题设中的隐含条件,合理地进行等价转化.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目