ÌâÄ¿ÄÚÈÝ

ÒÑÖªµãP£¨x0£¬y0£©Êǽ¥½üÏßΪ2x¡À3y=0ÇÒ¾­¹ý¶¨µã£¨6£¬2
3
£©µÄË«ÇúÏßC1ÉϵÄÒ»¶¯µã£¬µãQÊÇP¹ØÓÚË«ÇúÏßC1ʵÖáA1A2µÄ¶Ô³Æµã£¬ÉèÖ±ÏßPA1ÓëQA2µÄ½»µãΪM£¨x£¬y£©£¬
£¨1£©ÇóË«ÇúÏßC1µÄ·½³Ì£»
£¨2£©Ç󶯵ãMµÄ¹ì¼£C2µÄ·½³Ì£»
£¨3£©ÒÑÖªxÖáÉÏÒ»¶¨µãN£¨1£¬0£©£¬¹ýNµãбÂʲ»Îª0µÄÖ±ÏßL½»C2ÓÚA¡¢BÁ½µã£¬xÖáÉÏÊÇ·ñ´æÔÚ¶¨µã K£¨x0£¬0£©Ê¹µÃ¡ÏAKN=¡ÏBKN£¿Èô´æÔÚ£¬Çó³öµãKµÄ×ø±ê£»Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£®
·ÖÎö£º£¨1£©Ö±½ÓÉèÉèc1·½³ÌΪ 4x2-9y2=¦Ë£¬Óֵ㣨6£¬2
3
£©ÔÚÇúÏßÉÏ´úÈëµÃ¦Ë=36¼´¿ÉµÃµ½½áÂÛ£»
£¨2£©½áºÏÒÑÖªµÃµ½KPA 1=
y
x+3
=
y0
x0+3
£¬KPA 2=
y
x-3
=
-y0
x0-3
£»Ïà³ËÕûÀí¼´¿ÉµÃµ½½áÂÛ£»
£¨3£©ÏÈÁªÁ¢Ö±Ïß·½³ÌÓëÇúÏß·½³Ì£¬µÃµ½y1+y2=
-8t
9+4t2
£¬y1y2=
-5
9+4t2
£»¸ù¾Ý¡ÏAKN=¡ÏBKNµÃµ½KAN+KBN=0£»ÕûÀíºó½áºÏÒÑÖªÌõ¼þ¼´¿ÉÇó³ö½áÂÛ£®
½â´ð£º½â£º£¨1£©¿ÉÉèc1·½³ÌΪ 4x2-9y2=¦Ë£¬Óֵ㣨6£¬2
3
£©ÔÚÇúÏßÉÏ´úÈëµÃ¦Ë=36£®
ËùÒÔË«ÇúÏßC1µÄ·½³ÌΪ£º
x2
9
-
y2
4
=1
                      ¡­£¨4·Ö£©
£¨2£©ÓÉÌâÒâA1£¨-3£¬0£©£¬A2£¨3£¬0£©£¬Q£¨x0£¬-y0£©£®
µ±PÒìÓÚ¶¥µãʱ£¬KPA 1=
y
x+3
=
y0
x0+3
£¬KQA 2=
y
x-3
=
-y0
x0-3

ËùÒÔ 
y2
x2-9
=
-y02
x02-9
=-
4
9
   ¼´  
x2
9
+
y2
4
=1£¬  (x¡Ù¡À3)
£®
µ±PΪ¶¥µãʱֱÏßPA1Óë QA2µÄ½»µãΪ¶¥µã
ËùÒÔ      
x2
9
+
y2
4
=1£®¡­£¨9·Ö£©
£¨3£©ÉèL½»ÇúÏßC2ÓÚA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬¿ÉÉèL·½³ÌΪx=ty+1 £¨t¡Ù0£©
´úÈëC2·½³ÌµÃ   £¨9+4t2£©y2+8ty-32=0
y1+y2=
-8t
9+4t2
£¬y1y2=
-32
9+4t2
£®
Èô´æÔÚK£¬ÔòKAK+KBK=0£¬
¡ày1£¨ty2+1-xK£©+y2£¨ty1+1-xK£©=0
¼´  2t•
-32
9+4t2
+£¨1-xK£©•
-8t
9+4t2
=0¶Ôtºã³ÉÁ¢
ËùÒÔ  xK=9
¹ÊµãK×ø±êΪ£¨9£¬0£©¡­£¨14·Ö£©
µãÆÀ£º±¾ÌâÖ÷Òª¿¼²éÖ±ÏßÓëԲ׶ÇúÏßµÄ×ÛºÏÎÊÌ⣮½â¾öÕâÀàÎÊÌâµÄ³£Ó÷½·¨Ê±£¬ÁªÁ¢Ö±Ïß·½³ÌÓëԲ׶ÇúÏß·½³Ì£¬ÔÙ½áºÏÒÑÖªÌõ¼þÇó½â£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø