题目内容
【题目】如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则它的体积为( )
A.48
B.16
C.32
D.16
【答案】B
【解析】解:根据三视图得出:该几何体是镶嵌在正方体中的四棱锥O﹣ABCD, 正方体的棱长为4,O、A、D分别为棱的中点,
∴OD=2 ,AB=DC=OC=2 ,
做OE⊥CD,垂足是E,
∵BC⊥平面ODC,∴BC⊥OE、BC⊥CD,则四边形ABCD是矩形,
∵CD∩BC=C,∴OE⊥平面ABCD,
∵△ODC的面积S= =6,
∴6= = ,得OE= ,
∴此四棱锥O﹣ABCD的体积V= = =16,
故选:B.
【考点精析】通过灵活运用由三视图求面积、体积,掌握求体积的关键是求出底面积和高;求全面积的关键是求出各个侧面的面积即可以解答此题.
【题目】将函数f(x)=3sin(4x+ )图象上所有点的横坐标伸长到原来的2倍,再向右平移 个单位长度,得到函数y=g(x)的图象,则y=g(x)图象的一条对称轴是( )
A.x=
B.x=
C.
D.
【题目】近年来共享单车在我国主要城市发展迅速.目前市场上有多种类型的共享单车,有关部门对其中三种共享单车方式(M方式、Y方式、F方式)进行统计(统计对象年龄在15~55岁),相关数据如表1,表2所示. 三种共享单车方式人群年龄比例(表1)
方式 | M | Y | F |
[15,25) | 25% | 20% | 35% |
[25,35) | 50% | 55% | 25% |
[35,45) | 20% | 20% | 20% |
[45,55] | 5% | a% | 20% |
不同性别选择共享单车种类情况统计(表2)
性别 | 男 | 女 |
1 | 20% | 50% |
2 | 35% | 40% |
3 | 45% | 10% |
(Ⅰ)根据表1估算出使用Y共享单车方式人群的平均年龄;
(Ⅱ)若从统计对象中随机选取男女各一人,试估计男性使用共享单车种类数大于女性使用共享单车种类数的概率;
(Ⅲ)现有一个年龄在25~35岁之间的共享单车用户,那么他使用Y方式出行的概率最大,使用F方式出行的概率最小,试问此结论是否正确?(只需写出结论)