题目内容

已知a,b,c为△ABC的三个内角A,B,C的对边,向量
m
=(1,-
3
)
n
=(cosA,sinA),
m
n
,且acosC+ccosA=bsinB.
(Ⅰ)求角C的值;
(Ⅱ)△ABC的面积为
3
3
2
,求a+b的值.
分析:(Ⅰ)利用向量的垂直,数量积为0,推出A的三角函数的关系,求出A的值,利用正弦定理、两角和的正弦函数化简方程,求出B的值,然后求角C的值;
(Ⅱ)通过△ABC的面积为
3
3
2
,求出ab的值,求a+b的值.
解答:解:(Ⅰ)由
m
n
,得cosA-
3
sinA=0
,即tanA=
3
3
,∵A∈(0,π),∴A=
π
6
,(2分)
∵acosC+ccosA=bsinB,∴由正弦定理得sinAcosC+sinCcosA=sinBsinB,
即sin(A+C)=sin2B,(4分)
又∵sin(A+C)=sinB,∴sinB=sin2B,∴sinB=1,∴B=
π
2
,∴C=
π
3
.(6分)
(Ⅱ由面积公式得
1
2
absin
π
3
=
3
3
2
,即ab=6
,(8分),又
b
a
= 2

a+b=3
3
.(12分)
点评:本题主要考查三角形中的几何计算.常涉及正弦定理、余弦定理和面积公式等常用公式,故应熟练记忆.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网