题目内容
平面直角坐标系xOy内有向量
=(1,7),
=(5,1),
=(2,1),点Q为直线OP上一动点.
(1)当
·
取得最小值时,求
坐标;
(2)当点Q满足(1)中条件时,求cos∠AQB的值.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020201727394.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020201727382.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020201743381.png)
(1)当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020201774425.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020201789420.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020201805397.png)
(2)当点Q满足(1)中条件时,求cos∠AQB的值.
(1)当y=2时,
·
有最小值-8,此时
=(4,2).(2)-
.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020201774425.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020201789420.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020201805397.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020201867497.png)
试题分析:(1)设
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020201805397.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020201743381.png)
∴向量
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020201743381.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020201805397.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020201743381.png)
∴x-2y=0,即x=2y,∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020201805397.png)
又
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020201774425.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020201727394.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020201805397.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020201743381.png)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020201774425.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020201789420.png)
故当y=2时,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020201774425.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020201789420.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020201805397.png)
(2)由(1)知
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020201727394.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020201789420.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020201727394.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020202148412.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020201727394.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020202179411.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020202195450.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020202211344.png)
∴cos∠AQB=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020202226847.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020201867497.png)
点评:中档题,本题综合考查平面向量的线性运算,平面向量的数量积,平面向量的坐标计算,二次函数的图象和性质,对学生的计算能力有较高要求。向量的夹角公式
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020202257874.png)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目