题目内容

19.如果一个点是一个指数函数与一个对数函数的图象的公共点,那么称这个点为“好点”.在下面的四个点M(1,1)、$P({\frac{1}{2},\frac{1}{2}})$、Q(2,1)、$H({2,\frac{1}{2}})$中,“好点”的个数为(  )个.
A.1B.2C.3D.4

分析 根据“好点”的定义,只要判断点在指数函数和对数函数图象上即可.

解答 解:设对数函数为f(x)=logax,指数函数为g(x)=bx
①∵f(1)=loga1=0,∴M(1,1)不在对数函数图象上,故M(1,1)不是“好点”.
②∵f($\frac{1}{2}$)=loga$\frac{1}{2}$=$\frac{1}{2}$,∴a=$\frac{1}{4}$,即P($\frac{1}{2}$,$\frac{1}{2}$)在对数函数图象上,
∵g($\frac{1}{2}$)=b2=$\frac{1}{2}$,解得b=$\frac{1}{4}$,即P($\frac{1}{2}$,$\frac{1}{2}$)在指数函数图象上,故P($\frac{1}{2}$,$\frac{1}{2}$)是“好点”.
③∵f(2)=loga2=1,∴a=2,即Q(2,1)在对数函数图象上,
∵g(2)=b2=1,解得b=1,不成立,即Q(2,1)不在指数函数图象上,故Q(2,1)不是“好点”.
④f(2)=loga2=$\frac{1}{2}$,∴a=4,即H(2,$\frac{1}{2}$)在对数函数图象上,
∵g(2)=b2=$\frac{1}{2}$,解得b=$\frac{\sqrt{2}}{2}$即H(2,$\frac{1}{2}$)在指数函数图象上,故H(2,$\frac{1}{2}$)是“好点”.
故P,H是“好点,
故选:B.

点评 本题主要考查与指数函数和对数函数有关的新定义,定义的实质是解指数方程和对数方程.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网