题目内容
设分别是椭圆的左右焦点,是上一点且与轴垂直,直线与的另一个交点为.
(1)若直线的斜率为,求的离心率;
(2)若直线在轴上的截距为,且,求.
(1);(2)
解析试题分析:(1)由已知得,故直线的斜率为,结合得关于的方程,解方程得离心率的值;(2)依题意,直线和轴的交点是线段的中点.故,①
又因为,得,从而得三个点坐标的关系,将点的坐标表示出来代入椭圆方程的,得另一个关于的方程并联立方程①求即可.
(1)根据及题设知,.将代入,解得,
(舍去).故的离心率为.
(2)由题意,原点为的中点,轴,所以直线与轴的交点是线段的中点.故,即.①由得.设,由题意得,,则即代入C的方程,得,②将①及代入②得
.解得,,故.
考点:椭圆的标准方程和简单几何性质;2、中点坐标公式.
练习册系列答案
相关题目