题目内容

已知-1<a+b<3且2<ab<4,求2a+3b的取值范围.
<2a+3b
a+bab的范围已知,
∴要求2a+3b的取值范围,
只需将2a+3b用已知量a+bab表示出来.
可设2a+3b=xa+b)+yab),用待定系数法求出xy.
设2a+3b=xa+b)+yab),
解得
∴-a+b)<
-2<-ab)<-1.
∴-a+b)-ab)<
即-<2a+3b.
错解:解此题常见错误是:-1<a+b<3,                                                            ①
2<ab<4.                                                                                                           ②
①+②得1<2a<7.                                                                                                 ③
由②得-4<ba<-2.                                                                                         ④
①+④得-5<2b<1,∴-<3b.                                                                ⑤
③+⑤得-<2a+3b.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网