题目内容
已知-1<a+b<3且2<a-b<4,求2a+3b的取值范围.
-<2a+3b<
∵a+b,a-b的范围已知,
∴要求2a+3b的取值范围,
只需将2a+3b用已知量a+b,a-b表示出来.
可设2a+3b=x(a+b)+y(a-b),用待定系数法求出x、y.
设2a+3b=x(a+b)+y(a-b),
∴解得
∴-<(a+b)<,
-2<-(a-b)<-1.
∴-<(a+b)-(a-b)<,
即-<2a+3b<.
错解:解此题常见错误是:-1<a+b<3, ①
2<a-b<4. ②
①+②得1<2a<7. ③
由②得-4<b-a<-2. ④
①+④得-5<2b<1,∴-<3b<. ⑤
③+⑤得-<2a+3b<.
∴要求2a+3b的取值范围,
只需将2a+3b用已知量a+b,a-b表示出来.
可设2a+3b=x(a+b)+y(a-b),用待定系数法求出x、y.
设2a+3b=x(a+b)+y(a-b),
∴解得
∴-<(a+b)<,
-2<-(a-b)<-1.
∴-<(a+b)-(a-b)<,
即-<2a+3b<.
错解:解此题常见错误是:-1<a+b<3, ①
2<a-b<4. ②
①+②得1<2a<7. ③
由②得-4<b-a<-2. ④
①+④得-5<2b<1,∴-<3b<. ⑤
③+⑤得-<2a+3b<.
练习册系列答案
相关题目