题目内容

数列{an}是首项为23,公差为整数的等差数列,且第六项为正,第七项为负.

(1)求数列的公差;

(2)求前n项和Sn的最大值;

(3)当Sn>0时,求n的最大值.

(1)d=-4;(2)S6=6×23+ (-4)=78;(3)n的最大值为12。


解析:

(1)由已知a6=a1+5d=23+5d>0,a7=a1+6d=23+6d<0,

解得:-d<-,又d∈Z,∴d=-4

(2)∵d<0,∴{an}是递减数列,又a6>0,a7<0

∴当n=6时,Sn取得最大值,S6=6×23+ (-4)=78

(3)Sn=23n (-4)>0,整理得:n(50-4n)>0

∴0<n,又n∈N*,

所求n的最大值为12.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网