题目内容
(04年江苏卷)设函数,区间M=[a,b](a<b),集合N={},则使M=N成立的实数对(a,b)有 ( )
(A)0个 (B)1个 (C)2个 (D)无数多个
(04年福建卷)(12分)
设函数f(x)=a?b,其中向量a=(2cosx,1),b=(cosx, sin2x),x∈R.
(Ⅰ)若f(x)=1-且x∈[-,],求x;
(Ⅱ)若函数y=2sin2x的图象按向量c=(m,n)(|m|<)平移后得到函数y=f(x)的图象,求实数m、n的值。
(04年广东卷)(12分)
设函数
(I)证明:当且时,
(II)点(0<x0<1)在曲线上,求曲线上在点处的切线与轴,轴正向所围成的三角形面积的表达式。(用表示)
设函数,其中常数为整数
(I)当为何值时,
(II)定理:若函数在上连续,且与异号,则至少存在一点,使得
试用上述定理证明:当整数时,方程在内有两个实根
(04年江苏卷)设k>1,f(x)=k(x-1)(x∈R) . 在平面直角坐标系xOy中,函数y=f(x)的图象与x轴交于A点,它的反函数y=f -1(x)的图象与y轴交于B点,并且这两个函数的图象交于P点. 已知四边形OAPB的面积是3,则k等于 ( )
(A) (B) (C) (D)