ÌâÄ¿ÄÚÈÝ
ÉèÍÖÔ²C£º£¨a£¾b£¾0£©µÄÒ»¸ö¶¥µã×ø±êΪA£¨£©£¬ÇÒÆäÓÒ½¹µãµ½Ö±ÏߵľàÀëΪ3£®£¨1£©ÇóÍÖÔ²CµÄ¹ì¼£·½³Ì£»
£¨2£©ÈôA¡¢BÊÇÍÖÔ²CÉϵIJ»Í¬Á½µã£¬ÏÒAB£¨²»Æ½ÐÐÓÚyÖᣩµÄ´¹Ö±Æ½·ÖÏßÓëxÖáÏཻÓÚµãM£¬Ôò³ÆÏÒABÊǵãMµÄÒ»Ìõ¡°Ïà¹ØÏÒ¡±£¬Èç¹ûµãMµÄ×ø±êΪM£¨£©£¬ÇóÖ¤µãMµÄËùÓС°Ïà¹ØÏÒ¡±µÄÖеãÔÚͬһÌõÖ±ÏßÉÏ£»
£¨3£©¸ù¾Ý½â¾öÎÊÌ⣨2£©µÄ¾ÑéÓëÌå»á£¬ÇëÔËÓÃÀà±È¡¢ÍƹãµÈ˼Ïë·½·¨£¬Ìá³öÒ»¸öÓë¡°Ïà¹ØÏÒ¡±ÓйصľßÓÐÑо¿¼ÛÖµµÄ½áÂÛ£¬²¢¼ÓÒÔ½â¾ö£®£¨±¾Ð¡Ì⽫¸ù¾ÝËùÌá³öÎÊÌâµÄ²ã´ÎÐÔ¸øÓ費ͬµÄ·ÖÖµ£©
¡¾´ð°¸¡¿·ÖÎö£º£¨1£©¸ù¾ÝÍÖÔ²µÄ½¹µãÔÚxÖáÉÏ£¬¿ÉÖª£©£¬¸ù¾ÝÓÒ½¹µãµ½Ö±ÏߵľàÀëΪ3£¬¿ÉµÃ£¬´Ó¶ø¿ÉÇóa=2£¬¹Ê¿ÉµÃÍÖÔ²CµÄ¹ì¼£·½³Ì£»
£¨2£©£©ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬ÖеãΪP£¨x£¬y£©£¬
ÓÉÓÚ£¬ËùÒÔ£¬ÀûÓõãÔÚÍÖÔ²ÉÏ£¬ÓУ¨x1-x2£©£¨x1+x2£©+2£¨y1-y2£©£¨y1+y2£©=0£¬ÓÉ´ËÄܵ¼³öµãMµÄËùÓС°Ïà¹ØÏÒ¡±µÄÖеãÔÚͬһÌõÖ±Ïßx=1ÉÏ£®
£¨3£©ÍÖÔ²µ½Ò»°ã£¬µãµ½Ò»°ã¼´¿ÉµÃ½áÂÛ£ºÈôA¡¢BÊÇÍÖÔ²£¨a£¾b£¾0£©£©ÉϵIJ»Í¬Á½µã£®ÏÒAB£¨²»Æ½ÐÐÓÚyÖᣩµÄ´¹Ö±Æ½·ÖÏßÓëxÖáÏཻÓÚµãM£¬Ôò³ÆÏÒABÊǵãMµÄÒ»Ìõ¡°Ïà¹ØÏÒ¡±£¬Èç¹ûµãMµÄ×ø±êΪM£¨t£¬0£©£¬µ±Ê±£¬Ö¤Ã÷£ºµãMµÄËùÓС°Ïà¹ØÏÒ¡±µÄÖеãÔÚͬһÌõÖ±ÏßÉÏ£®
½â´ð£º½â£º£¨1£©£¬
¸ù¾ÝÓÒ½¹µãµ½Ö±ÏߵľàÀëΪ3£¬¿ÉµÃ£¬¡àa=2
¡àÍÖÔ²CµÄ±ê×¼·½³Ì£º
£¨2£©ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬ÖеãΪP£¨x£¬y£©£¬
ÓÉÓÚ£¬ËùÒÔ£¨¢ñ£©
Ôòx12+2y12¢Ùx22+2y22¢Ú£®
ÓÉ¢Ù¢ÚÁ½Ê½Ïà¼õµÃ£ºx12-x22+2y12-2y22=0
¼´£¨x1-x2£©£¨x1+x2£©+2£¨y1-y2£©£¨y1+y2£©=0£¨¢ò£©
ÓÉ£¨¢ñ£©£¬£¨¢ò£©µÃ£ºx=1
Òò´Ë£ºµãMµÄËùÓС°Ïà¹ØÏÒ¡±µÄÖеãÔÚͬһÌõÖ±Ïßx=1ÉÏ£®
£¨3£©ÍÖÔ²µ½Ò»°ã£¬µãµ½Ò»°ã
ÈôA¡¢BÊÇÍÖÔ²£¨a£¾b£¾0£©£©ÉϵIJ»Í¬Á½µã£®ÏÒAB£¨²»Æ½ÐÐÓÚyÖᣩµÄ´¹Ö±Æ½·ÖÏßÓëxÖáÏཻÓÚµãM£¬Ôò³ÆÏÒABÊǵãMµÄÒ»Ìõ¡°Ïà¹ØÏÒ¡±£¬Èç¹ûµãMµÄ×ø±êΪM£¨t£¬0£©£¬µ±Ê±£¬Ö¤Ã÷£ºµãMµÄËùÓС°Ïà¹ØÏÒ¡±µÄÖеãÔÚͬһÌõÖ±ÏßÉÏ£®
µãÆÀ£º±¾ÌâµÄ¿¼µãÊÇÖ±ÏßÓëԲ׶ÇúÏßµÄ×ÛºÏÎÊÌ⣬Ö÷Òª¿¼²éÍÖÔ²±ê×¼·½³ÌµÄÇó½â£¬¿¼²éµã²î·¨£¬Í¬Ê±¿¼²éѧÉú̽¾¿ÄÜÁ¦£¬ÓÐÒ»¶¨µÄÄѶȣ®
£¨2£©£©ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬ÖеãΪP£¨x£¬y£©£¬
ÓÉÓÚ£¬ËùÒÔ£¬ÀûÓõãÔÚÍÖÔ²ÉÏ£¬ÓУ¨x1-x2£©£¨x1+x2£©+2£¨y1-y2£©£¨y1+y2£©=0£¬ÓÉ´ËÄܵ¼³öµãMµÄËùÓС°Ïà¹ØÏÒ¡±µÄÖеãÔÚͬһÌõÖ±Ïßx=1ÉÏ£®
£¨3£©ÍÖÔ²µ½Ò»°ã£¬µãµ½Ò»°ã¼´¿ÉµÃ½áÂÛ£ºÈôA¡¢BÊÇÍÖÔ²£¨a£¾b£¾0£©£©ÉϵIJ»Í¬Á½µã£®ÏÒAB£¨²»Æ½ÐÐÓÚyÖᣩµÄ´¹Ö±Æ½·ÖÏßÓëxÖáÏཻÓÚµãM£¬Ôò³ÆÏÒABÊǵãMµÄÒ»Ìõ¡°Ïà¹ØÏÒ¡±£¬Èç¹ûµãMµÄ×ø±êΪM£¨t£¬0£©£¬µ±Ê±£¬Ö¤Ã÷£ºµãMµÄËùÓС°Ïà¹ØÏÒ¡±µÄÖеãÔÚͬһÌõÖ±ÏßÉÏ£®
½â´ð£º½â£º£¨1£©£¬
¸ù¾ÝÓÒ½¹µãµ½Ö±ÏߵľàÀëΪ3£¬¿ÉµÃ£¬¡àa=2
¡àÍÖÔ²CµÄ±ê×¼·½³Ì£º
£¨2£©ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬ÖеãΪP£¨x£¬y£©£¬
ÓÉÓÚ£¬ËùÒÔ£¨¢ñ£©
Ôòx12+2y12¢Ùx22+2y22¢Ú£®
ÓÉ¢Ù¢ÚÁ½Ê½Ïà¼õµÃ£ºx12-x22+2y12-2y22=0
¼´£¨x1-x2£©£¨x1+x2£©+2£¨y1-y2£©£¨y1+y2£©=0£¨¢ò£©
ÓÉ£¨¢ñ£©£¬£¨¢ò£©µÃ£ºx=1
Òò´Ë£ºµãMµÄËùÓС°Ïà¹ØÏÒ¡±µÄÖеãÔÚͬһÌõÖ±Ïßx=1ÉÏ£®
£¨3£©ÍÖÔ²µ½Ò»°ã£¬µãµ½Ò»°ã
ÈôA¡¢BÊÇÍÖÔ²£¨a£¾b£¾0£©£©ÉϵIJ»Í¬Á½µã£®ÏÒAB£¨²»Æ½ÐÐÓÚyÖᣩµÄ´¹Ö±Æ½·ÖÏßÓëxÖáÏཻÓÚµãM£¬Ôò³ÆÏÒABÊǵãMµÄÒ»Ìõ¡°Ïà¹ØÏÒ¡±£¬Èç¹ûµãMµÄ×ø±êΪM£¨t£¬0£©£¬µ±Ê±£¬Ö¤Ã÷£ºµãMµÄËùÓС°Ïà¹ØÏÒ¡±µÄÖеãÔÚͬһÌõÖ±ÏßÉÏ£®
µãÆÀ£º±¾ÌâµÄ¿¼µãÊÇÖ±ÏßÓëԲ׶ÇúÏßµÄ×ÛºÏÎÊÌ⣬Ö÷Òª¿¼²éÍÖÔ²±ê×¼·½³ÌµÄÇó½â£¬¿¼²éµã²î·¨£¬Í¬Ê±¿¼²éѧÉú̽¾¿ÄÜÁ¦£¬ÓÐÒ»¶¨µÄÄѶȣ®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿