题目内容
已知 是等差数列,是公比为的等比数列,,记为数列的前项和,
(1)若是大于的正整数,求证:;
(2)若是某一正整数,求证:是整数,且数列中每一项都是数列中的项;
(3)是否存在这样的正数,使等比数列中有三项成等差数列?若存在,写出一个的值,并加以说明;若不存在,请说明理由;
(1)
(2)存在使得中有三项成等差数列。
解析试题分析:设的公差为,由,知,()
(1)因为,所以,
,
所以
(2),由,
所以解得,或,但,所以,因为是正整数,所以是整数,即是整数,设数列中任意一项为
,设数列中的某一项=
现在只要证明存在正整数,使得,即在方程中有正整数解即可,,所以
,若,则,那么,当时,因为,只要考虑的情况,因为,所以,因此是正整数,所以是正整数,因此数列中任意一项为
与数列的第项相等,从而结论成立。
(3)设数列中有三项成等差数列,则有
2设,所以2,令,则,因为,所以,所以,即存在使得中有三项成等差数列。
考点:本题主要考查等比数列的通项公式、求和公式,等差数列的概念。
点评:难题,等比数列、等差数列相关内容,已是高考必考内容,其难度飘忽不定,有时突出考查求和问题,如“分组求和法”、“裂项相消法”、“错位相减法”等,有时则突出涉及数列的证明题,如本题,突出考查学生的逻辑思维能力。本题解法中,注意通过构造“一般项”加以研究,带有普遍性。
练习册系列答案
相关题目