题目内容
完成下列填空,并按要求画出函数的简图,不写画法,请保留画图过程中的痕迹,痕迹用虚线表示,最后成图部分用实线表示.
(1)函数y=|x2-2x-3|的零点是______,利用函数y=x2-2x-3的图象,在直角坐标系(1)中画出函数y=|x2-2x-3|的图象.
(2)函数y=2|x|+1的定义域是______,值域是______,是______函数(填“奇”、“偶”或“非奇非偶”).利用y=2x的图象,通过适当的变换,在直角坐标系(2)中画出函数y=2|x|+1的图象.
(1)函数y=|x2-2x-3|的零点是______,利用函数y=x2-2x-3的图象,在直角坐标系(1)中画出函数y=|x2-2x-3|的图象.
(2)函数y=2|x|+1的定义域是______,值域是______,是______函数(填“奇”、“偶”或“非奇非偶”).利用y=2x的图象,通过适当的变换,在直角坐标系(2)中画出函数y=2|x|+1的图象.
(1)令|x2-2x-3|=0,解得x=-1或3
故答案为:-1,3
图象如下图:
(2)函数y=2|x|+1的定义域是R,∵|x|≥0,∴2|x|≥1
∴2|x|+1≥2即函数y=2|x|+1的值域为[2,+∞)
f(-x)=2|-x|+1=2|x|+1=f(x)
∴函数y=2|x|+1为偶函数
故答案为:R,[2,+∞),偶
函数y=2|x|+1的图象如下图
故答案为:-1,3
图象如下图:
(2)函数y=2|x|+1的定义域是R,∵|x|≥0,∴2|x|≥1
∴2|x|+1≥2即函数y=2|x|+1的值域为[2,+∞)
f(-x)=2|-x|+1=2|x|+1=f(x)
∴函数y=2|x|+1为偶函数
故答案为:R,[2,+∞),偶
函数y=2|x|+1的图象如下图
练习册系列答案
相关题目