题目内容

f(x)定义域为D={x|log2(
4
|x|
-1)≥1}
,又对于任意x1、x2∈D,有f(x1x2)=f(x1)+f(x2).
(1)将D用区间表示;
(2)求证:f(1)=f(-1).
(1)∵log2(
4
|x|
-1)≥1

4
|x|
-1≥2
…(2分)
4
|x|
≥3

|x|≤
4
3

x∈[-
4
3
4
3
]
且x≠0
D=[-
4
3
,0)∪(0,
4
3
]
…(6分)
证明:(2)令x1=x2=1,则f(1)=f(1)+f(1)
∴f(1)=0
令x1=x2=-1,则f(1)=f(-1)+f(-1)
∴f(-1)=0
所以f(1)=f(-1)…(12分)
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网