题目内容
(1)用综合法或分析法证明:![数学公式](http://thumb.zyjl.cn/pic5/latex/184903.png)
(2)用反证法求证:
.
.
三个数不可能成等差数列.
证明:(1)要证
,只要证
>
,
只要证 9+2
>9+2
,只要证
>
. 而
>
显然成立,
故原不等式成立.
(2)假设
这三个数成等差数列,则由等差数列的性质可得 2
=
,
∴32=5+11+2
,∴8=
,∴64=55 (矛盾),故假设不成立,
∴
这三个数不可能成等差数列.
分析:(1)只要证
>
,只要证 9+2
>9+2
,只要证
>
.
(2)假设
这三个数成等差数列,则有 2
=
,能推出64=55 (矛盾 ).
点评:本题考查用分析法和反证法证明不等式,用分析法证明不等式的关键是寻找使不等式成立的充分条件,用反证法证明不等式的关键是推出矛盾.
![](http://thumb.zyjl.cn/pic5/latex/184903.png)
![](http://thumb.zyjl.cn/pic5/latex/524060.png)
![](http://thumb.zyjl.cn/pic5/latex/30382.png)
只要证 9+2
![](http://thumb.zyjl.cn/pic5/latex/1388.png)
![](http://thumb.zyjl.cn/pic5/latex/14760.png)
![](http://thumb.zyjl.cn/pic5/latex/1388.png)
![](http://thumb.zyjl.cn/pic5/latex/14760.png)
![](http://thumb.zyjl.cn/pic5/latex/1388.png)
![](http://thumb.zyjl.cn/pic5/latex/14760.png)
故原不等式成立.
(2)假设
![](http://thumb.zyjl.cn/pic5/latex/524061.png)
![](http://thumb.zyjl.cn/pic5/latex/4883.png)
![](http://thumb.zyjl.cn/pic5/latex/524062.png)
∴32=5+11+2
![](http://thumb.zyjl.cn/pic5/latex/188993.png)
![](http://thumb.zyjl.cn/pic5/latex/188993.png)
∴
![](http://thumb.zyjl.cn/pic5/latex/524063.png)
分析:(1)只要证
![](http://thumb.zyjl.cn/pic5/latex/524060.png)
![](http://thumb.zyjl.cn/pic5/latex/30382.png)
![](http://thumb.zyjl.cn/pic5/latex/1388.png)
![](http://thumb.zyjl.cn/pic5/latex/14760.png)
![](http://thumb.zyjl.cn/pic5/latex/1388.png)
![](http://thumb.zyjl.cn/pic5/latex/14760.png)
(2)假设
![](http://thumb.zyjl.cn/pic5/latex/524061.png)
![](http://thumb.zyjl.cn/pic5/latex/4883.png)
![](http://thumb.zyjl.cn/pic5/latex/524062.png)
点评:本题考查用分析法和反证法证明不等式,用分析法证明不等式的关键是寻找使不等式成立的充分条件,用反证法证明不等式的关键是推出矛盾.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目