ÌâÄ¿ÄÚÈÝ
¶ÔÓÚʵÊýx£¬½«Âú×ã¡°0¡Üy£¼1ÇÒx-yΪÕûÊý¡±µÄʵÊýy³ÆΪʵÊýxµÄСÊý²¿·Ö£¬ÓüǺÅ{x}±íʾ£®ÀýÈç{1.2}=0.2£¬{-1.2}=0.8£¬{
}=
£®¶ÔÓÚʵÊýa£¬ÎÞÇîÊýÁÐ{an}Âú×ãÈçÏÂÌõ¼þ£ºa1={a}£¬an+1=
ÆäÖÐn=1£¬2£¬3£¬¡£®
£¨1£©Èôa=
£¬Çóa2£¬a3 ²¢²ÂÏëÊýÁÐ{a}µÄͨÏʽ£¨²»ÐèÒªÖ¤Ã÷£©£»
£¨2£©µ±a£¾
ʱ£¬¶ÔÈÎÒâµÄn¡ÊN*£¬¶¼ÓÐan=a£¬Çó·ûºÏÒªÇóµÄʵÊýa¹¹³ÉµÄ¼¯ºÏA£»
£¨3£©ÈôaÊÇÓÐÀíÊý£¬Éèa=
£¨pÊÇÕûÊý£¬qÊÇÕýÕûÊý£¬p£¬q»¥ÖÊ£©£¬¶ÔÓÚ´óÓÚqµÄÈÎÒâÕýÕûÊýn£¬ÊÇ·ñ¶¼ÓÐan=0³ÉÁ¢£¬Ö¤Ã÷ÄãµÄ½áÂÛ£®
8 |
7 |
1 |
7 |
|
£¨1£©Èôa=
2 |
£¨2£©µ±a£¾
1 |
4 |
£¨3£©ÈôaÊÇÓÐÀíÊý£¬Éèa=
p |
q |
·ÖÎö£º£¨1£©ÓÉÌâÉèÖªa1={
}=
-1£¬a2={
}={
}={
+1}={
}=
-1£¬´Ó¶ø¿É²ÂÏëÊýÁÐ{a}µÄͨÏʽ£»
£¨2£©µ±
£¼a£¼1£¬¼´1£¼
£¼2ʱ£¬¿ÉÇóµÃa=
£¬Óɴ˽øÐзÖÀàÌÖÂÛ£¬ÄÜÇó³ö·ûºÏÒªÇóµÄʵÊýa¹¹³ÉµÄ¼¯ºÏA£»
£¨3£©³ÉÁ¢£®Ö¤Ã÷£ºÓÉaÊÇÓÐÀíÊý£¬¿ÉÖª¶ÔÒ»ÇÐÕýÕûÊýn£¬anΪ0»òÕýÓÐÀíÊý£¬¿ÉÉèan=
£¬ÓÉ´ËÀûÓ÷ÖÀàÌÖÂÛ˼ÏëÄܹ»ÍƵ¼³öÊýÁÐ{am}ÖÐamÒÔ¼°ËüÖ®ºóµÄÏî¾ùΪ0£¬ËùÒÔ¶ÔÓÚ´óÓÚqµÄ×ÔÈ»Êýn£¬¶¼ÓÐan=0£®
2 |
2 |
1 |
a1 |
1 | ||
|
2 |
2 |
2 |
£¨2£©µ±
1 |
2 |
1 |
a |
-1+
| ||
2 |
£¨3£©³ÉÁ¢£®Ö¤Ã÷£ºÓÉaÊÇÓÐÀíÊý£¬¿ÉÖª¶ÔÒ»ÇÐÕýÕûÊýn£¬anΪ0»òÕýÓÐÀíÊý£¬¿ÉÉèan=
pn |
qn |
½â´ð£º½â£º£¨1£©¡ßa1={
}=
-1£¬
a2={
}={
}={
+1}={
}=
-1£¬
ͬÀí¿ÉÇóa3=
-1£¬
ÓÚÊDzÂÏ룺an=
-1£®
£¨2£©µ±
£¼a£¼1£¬¼´1£¼
£¼2ʱ£¬a2={
}={
}=
-1=a£¬
¡àa2+a-1=0£¬
½âµÃa=
»òa=
£¨ÉáÈ¥£©£»
µ±
£¼a¡Ü
£¬¼´2¡Ü
£¼3ʱ£¬a2={
}={
}=
-2=a£¬
¡àa2+2a-1=0£¬
½âµÃa=
=
-1»òa=-
-1£¨ÉáÈ¥£©£»
µ±
£¼a¡Ü
£¬¼´3¡Ü
£¼4ʱ£¬a2={
}={
}=
-3=a£¬
¡àa2+3a-1=0£¬
½âµÃa=
»òa=
£¨ÉáÈ¥£©£®
×ÛÉÏËùÊö£¬·ûºÏÒªÇóµÄʵÊýa¹¹³ÉµÄ¼¯ºÏA={
£¬
-1£¬
}£®
£¨3£©ÓÉaÊÇÓÐÀíÊý¿ÉÖª£¬¶ÔÒ»ÇÐÕýÕûÊýn£¬anΪ0»òÕýÓÐÀíÊý£®
Éèan=
£¨pnÊǷǸºÕûÊý£¬qnÊÇÕýÕûÊýÇÒ
¼ÈÔ¼£©£®
¢ÙÓÉa1={
}=
µÃ£º0¡Üp1¡Üq£»
¢ÚÈôpn¡Ù0£¬Éèqn=¦Ápn+¦Â£¨0¡Ü¦Â£¼pn£¬¦Á£¬¦ÂΪ·Ç¸ºÕûÊý£©£¬
Ôò
=¦Á+
£¬¶øÓÉan=
£¬µÃ
=
£¬
¡àan+1={
}=
£¬
¡àpn+1=¦Â£¬qn+1=pn£¬
¡à0¡Üpn+1£¼pn£®
Èôpn=0£¬Ôòpn+1=0£¬
Èôa1¡¢a2¡¢a3¡¢¡¡¢aq¾ù²»Îª0£¬ÔòÕâq¸öÕýÕûÊý»¥²»ÏàͬÇÒ¶¼Ð¡ÓÚq£¬µ«Ð¡ÓÚqµÄÕýÕûÊý¹²ÓÐq-1¸ö£¬Ã¬¶Ü£®
¹Êa1¡¢a2¡¢a3¡¢¡¡¢aqÖÐÖÁÉÙÓÐÒ»¸öΪ0£¬¼´´æÔÚm£¨1¡Üm¡Üq£©Ê¹µÃam=0£®
´Ó¶ø{am}ÖÐam¼°ÒÔºóµÄÏî¾ùΪ0£¬ËùÒÔ¶Ô´óÓÚqµÄÈÎÒâÕýÕûÊýn£¬¶¼ÓÐan=0³ÉÁ¢£¬
2 |
2 |
a2={
1 |
a1 |
1 | ||
|
2 |
2 |
2 |
ͬÀí¿ÉÇóa3=
2 |
ÓÚÊDzÂÏ룺an=
2 |
£¨2£©µ±
1 |
2 |
1 |
a |
1 |
a1 |
1 |
a |
1 |
a |
¡àa2+a-1=0£¬
½âµÃa=
-1+
| ||
2 |
-1-
| ||
2 |
µ±
1 |
3 |
1 |
2 |
1 |
a |
1 |
a1 |
1 |
a |
1 |
a |
¡àa2+2a-1=0£¬
½âµÃa=
-2+
| ||
2 |
2 |
2 |
µ±
1 |
4 |
1 |
3 |
1 |
a |
1 |
a1 |
1 |
a |
1 |
a |
¡àa2+3a-1=0£¬
½âµÃa=
-3+
| ||
2 |
-3-
| ||
2 |
×ÛÉÏËùÊö£¬·ûºÏÒªÇóµÄʵÊýa¹¹³ÉµÄ¼¯ºÏA={
-1+
| ||
2 |
2 |
-3+
| ||
2 |
£¨3£©ÓÉaÊÇÓÐÀíÊý¿ÉÖª£¬¶ÔÒ»ÇÐÕýÕûÊýn£¬anΪ0»òÕýÓÐÀíÊý£®
Éèan=
pn |
qn |
pn |
qn |
¢ÙÓÉa1={
p |
q |
p1 |
q1 |
¢ÚÈôpn¡Ù0£¬Éèqn=¦Ápn+¦Â£¨0¡Ü¦Â£¼pn£¬¦Á£¬¦ÂΪ·Ç¸ºÕûÊý£©£¬
Ôò
qn |
pn |
¦Â |
pn |
pn |
qn |
1 |
an |
qn |
pn |
¡àan+1={
1 |
an |
¦Â |
pn |
¡àpn+1=¦Â£¬qn+1=pn£¬
¡à0¡Üpn+1£¼pn£®
Èôpn=0£¬Ôòpn+1=0£¬
Èôa1¡¢a2¡¢a3¡¢¡¡¢aq¾ù²»Îª0£¬ÔòÕâq¸öÕýÕûÊý»¥²»ÏàͬÇÒ¶¼Ð¡ÓÚq£¬µ«Ð¡ÓÚqµÄÕýÕûÊý¹²ÓÐq-1¸ö£¬Ã¬¶Ü£®
¹Êa1¡¢a2¡¢a3¡¢¡¡¢aqÖÐÖÁÉÙÓÐÒ»¸öΪ0£¬¼´´æÔÚm£¨1¡Üm¡Üq£©Ê¹µÃam=0£®
´Ó¶ø{am}ÖÐam¼°ÒÔºóµÄÏî¾ùΪ0£¬ËùÒÔ¶Ô´óÓÚqµÄÈÎÒâÕýÕûÊýn£¬¶¼ÓÐan=0³ÉÁ¢£¬
µãÆÀ£º±¾Ì⿼²éÊýÁеĵÝÍÆ£¬¿¼²é¼¯ºÏµÄÇ󷨣¬¿¼²éan=0ÊÇ·ñ³ÉÁ¢µÄÅжÏÓëÖ¤Ã÷£®×ÛºÏÐÔÇ¿£¬¼ÆËãÁ¿´ó£¬ÄѶȽϸߣ¬¶ÔÊýѧ˼άÄÜÁ¦µÄÒªÇó½Ï¸ß£®½âÌâʱҪÈÏÕæÉóÌ⣬עÒâµÈ¼Ûת»¯Ë¼ÏëºÍ·ÖÀàÌÖÂÛ˼ÏëµÄºÏÀíÔËÓã®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿