题目内容
(本小题满分12分)如图:在三棱锥中,已知点、、分别为棱、、的中点.
(1)求证:∥平面;
(2)若,,求证:平面⊥平面.
(1)求证:∥平面;
(2)若,,求证:平面⊥平面.
(Ⅰ)见解析;(Ⅱ)见解析。
本题主要考查了直线与平面平行的判定,以及面面的垂直的判定,同时考查空间想象能力、推理论证能力,考查数形结合思想、化归与转化思想,属于基础题.
(Ⅰ)欲证EF∥平面ABC,根据直线与平面平行的判定定理可知只需证EF与平面ABC内一直线平行,而EF是△SAC的中位线,则EF∥AC.又EF?平面ABC,AC?平面ABC,满足定理所需条件;
(Ⅱ)欲证平面SBD⊥平面ABC,根据面面垂直的判定定理可知在平面ABC内一直线与平面SBD垂直,而SD⊥AC,BD⊥AC,又SD∩DB=D,满足线面垂直的判定定理,则AC⊥平面SBD,又AC?平面ABC,从而得到结论
证明:(Ⅰ)∵是的中位线,∴∥.
又∵平面,平面,∴∥平面
(Ⅱ)∵,,∴.∵,,∴.
又∵平面,平面,,∴平面,
又∵平面,∴平面
(Ⅰ)欲证EF∥平面ABC,根据直线与平面平行的判定定理可知只需证EF与平面ABC内一直线平行,而EF是△SAC的中位线,则EF∥AC.又EF?平面ABC,AC?平面ABC,满足定理所需条件;
(Ⅱ)欲证平面SBD⊥平面ABC,根据面面垂直的判定定理可知在平面ABC内一直线与平面SBD垂直,而SD⊥AC,BD⊥AC,又SD∩DB=D,满足线面垂直的判定定理,则AC⊥平面SBD,又AC?平面ABC,从而得到结论
证明:(Ⅰ)∵是的中位线,∴∥.
又∵平面,平面,∴∥平面
(Ⅱ)∵,,∴.∵,,∴.
又∵平面,平面,,∴平面,
又∵平面,∴平面
练习册系列答案
相关题目