题目内容
已知定义在R上的奇函数f(x)满足f(1+x)=f(1-x),且f(x)在区间[3,5]上单调递增,则函数f(x)在区间[1,3]上的( )
A.最大值是f(1),最小值是f(3)
B.最大值是f(3),最小值是f(1)
C.最大值是f(1),最小值是f(2)
D.最大值是f(2),最小值是f(3)
解析:依题意得f(x)的图象关于直线x=1对称,f(x+1)=-f(x-1),f(x+2)=-f(x),f(x+4)=-f(x+2)=f(x),即函数f(x)是以4为周期的函数.由f(x)在[3,5]上是增函数与f(x)的图象关于直线x=1对称得,f(x)在[-3,-1]上是减函数.又函数f(x)是以4为周期的函数,因此f(x)在[1,3]上是减函数,f(x)在[1,3]上的最大值是f(1),最小值是f(3).
答案:A
练习册系列答案
相关题目