题目内容

设函数满足

1)求证,并求的取值范围;

2)证明函数内至少有一个零点;

3)设是函数的两个零点,求的取值范围.

 

1详见解析,2详见解析,(3.

【解析】

试题分析:(1)由等量关系消去C是解题思路,揭示a为正数是解题关键,本题是典型题,实质是三个实数和为零,则最大的数必为正数,最小的数必为负数,中间的数不确定,通常被消去,(2)证明区间内有解首选零点存在定理.连续性不是高中数学考核的知识点,重点考核的是区间端点函数值的符号.要确定区间端点函数值的符号,需恰当选择区间端点,这是应用零点存在定理的难点,本题符号确定,但符号不确定.由于两者符号与有关,所以需要对进行讨论,(3)要的取值范围,需先运用韦达定理建立函数解析式(二次函数),再利用(1的范围(定义域),求二次函数值域.本题思路简单,但不能忽视定义域在解题中作用.

试题解析:1)由题意得

2

5

2

上有零点

上有零点

函数内至少有一个零点 9

3

13

考点:二次函数值域,零点存在定理.

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网