题目内容
【题目】求下列不等式的解集:
(1)
(2)
(3)
(4)
【答案】(1);(2);(3);(4)
【解析】
(1)根据一元二次不等式的解法,求得不等式的解集.
(2)根据一元二次不等式的解法,求得不等式的解集.
(3)根据一元二次不等式的解法,求得不等式的解集.
(4)根据一元二次不等式的解法,求得不等式的解集.
(1)方法一(因式分解法)因为,
所以原不等式可化为,解得,
所以原不等式的解集为.
方法二(配方法)原不等式化为,因为,
所以原不等式可化为,即,
两边开平方,得,即,所以.
所以原不等式的解集为.
(2)原不等式化为,因为,
所以原不等式可化为,即.两边开平方,得,
即或.所以或,
所以原不等式的解集为.
(3)原不等式可化为,所以原不等式的解集为.
(4)原不等式可化为,即,即,所以原不等式的解集为.
【题目】对某电子元件进行寿命追踪调查,情况如下:
寿命分组/h | 100~200 | 200~300 | 300~400 | 400~500 | 500~600 |
个数 | 20 | 30 | 80 | 40 | 30 |
(1)求下表中的x,y;
寿命分组/h | 频数 | 频率 |
100~200 | 20 | 0.10 |
200~300 | 30 | x |
300~400 | 80 | 0.40 |
400~500 | 40 | 0.20 |
500~600 | 30 | y |
合计 | 200 | 1 |
(2)从频率分布直方图估计电子元件寿命的第80百分位数是多少.
【题目】2018年为我国改革开放40周年,某事业单位共有职工600人,其年龄与人数分布表如下:
年龄段 | ||||
人数(单位:人) | 180 | 180 | 160 | 80 |
约定:此单位45岁59岁为中年人,其余为青年人,现按照分层抽样抽取30人作为全市庆祝晚会的观众.
(1)抽出的青年观众与中年观众分别为多少人?
(2)若所抽取出的青年观众与中年观众中分别有12人和5人不热衷关心民生大事,其余人热衷关心民生大事.完成下列2×2列联表,并回答能否有90%的把握认为年龄层与热衷关心民生大事有关?
热衷关心民生大事 | 不热衷关心民生大事 | 总计 | |
青年 | 12 | ||
中年 | 5 | ||
总计 | 30 |
(3)若从热衷关心民生大事的青年观众(其中1人擅长歌舞,3人擅长乐器)中,随机抽取2人上台表演节目,则抽出的2 人能胜任的2人能胜任才艺表演的概率是多少?