题目内容

函数的定义域为R,且满足f(x)是偶函数,f(x-1)是奇函数,若f(
1
2
)=9
,则f(
25
2
)
=(  )
分析:由f(x-1)是奇函数,得到f(-x)=-f(x-2),又f(x)是偶函数,f(x)=f(-x)=-f(x-2),由此可得结论.
解答:解:∵f(x-1)是奇函数,∴f(-x-1)=-f(x-1),∴f(-x)=-f(x-2),
又∵f(x)是偶函数,∴f(x)=f(-x),
∴f(x)=-f(x-2),∴f(x+4)=f(x)
∴f(12.5)=f(3×4+0.5)=f(0.5)=9.
故选B.
点评:本题考查函数奇偶性,考查学生分析解决问题的能力,属于基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网