题目内容
已知数列{an}和{bn}满足a1=2,an-1=an(an+1-1),bn=an-1,数列{bn}的前n和为Sn.(1)求数列{bn}的通项公式;
(2)设Tn=S2n-Sn,求证:Tn+1>Tn;
(3)求证:对任意的n∈N*有1+
n |
2 |
1 |
2 |
分析:(1)由题设条件可知bn-bn+1=bnbn+1,从而得
-
=1,所以数列{
}是首项为1,公差为1的等差数列,由此可知数列{bn}的通项公式.
(2)由题设知Tn=S2n-Sn=1+
+
++
+
+
-(1+
+
++
)=
+
++
.故
>
,由此可证明Tn+1>Tn.
(3)根据题设条件可以用数学归纳法进行证明.
1 |
bn+1 |
1 |
bn |
1 |
bn |
(2)由题设知Tn=S2n-Sn=1+
1 |
2 |
1 |
3 |
1 |
n |
1 |
n+1 |
1 |
2n |
1 |
2 |
1 |
3 |
1 |
n |
1 |
n+1 |
1 |
n+2 |
1 |
2n |
1 |
2n+1 |
1 |
2n+2 |
(3)根据题设条件可以用数学归纳法进行证明.
解答:解:(1)由bn=an-1得an=bn+1代入an-1=an(an+1-1)得bn=(bn+1)bn+1
整理得bn-bn+1=bnbn+1,(1分)
∵bn≠0否则an=1,与a1=2矛盾
从而得
-
=1,(3分)
∵b1=a1-1=1
∴数列{
}是首项为1,公差为1的等差数列
∴
=n,即bn=
.(4分)
(2)∵Sn=1+
+
++
∴Tn=S2n-Sn=1+
+
++
+
+
-(1+
+
++
)
=
+
++
(6分)
∵2n+1<2n+2∴
>
∴Tn+1-Tn>
+
-
=0
∴Tn+1>Tn.(8分)
(3)用数学归纳法证明:
①当n=1时1+
=1+
,S2n=1+
,
+n=
+1,不等式成立;(9分)
②假设当n=k(k≥1,k∈N*)时,不等式成立,即1+
≤S2k≤
+k,那么当n=k+1时S2k+1=1+
++
++
≥1+
+
++
>1+
+
=1+
+
=1+
(12分)S2k+1=1+
++
++
≤
+k+
++
<
+k+
=
+(k+1)
∴当n=k+1时,不等式成立
综①②知对任意的n∈N*,不等式成立.(14分)
整理得bn-bn+1=bnbn+1,(1分)
∵bn≠0否则an=1,与a1=2矛盾
从而得
1 |
bn+1 |
1 |
bn |
∵b1=a1-1=1
∴数列{
1 |
bn |
∴
1 |
bn |
1 |
n |
(2)∵Sn=1+
1 |
2 |
1 |
3 |
1 |
n |
∴Tn=S2n-Sn=1+
1 |
2 |
1 |
3 |
1 |
n |
1 |
n+1 |
1 |
2n |
1 |
2 |
1 |
3 |
1 |
n |
=
1 |
n+1 |
1 |
n+2 |
1 |
2n |
∵2n+1<2n+2∴
1 |
2n+1 |
1 |
2n+2 |
∴Tn+1-Tn>
1 |
2n+2 |
1 |
2n+2 |
1 |
n+1 |
∴Tn+1>Tn.(8分)
(3)用数学归纳法证明:
①当n=1时1+
n |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
②假设当n=k(k≥1,k∈N*)时,不等式成立,即1+
k |
2 |
1 |
2 |
1 |
2 |
1 |
2k |
1 |
2k+1 |
k |
2 |
1 |
2k+1 |
1 |
2k+1 |
k |
2 |
| ||||||
2k个 |
k |
2 |
1 |
2 |
k+1 |
2 |
1 |
2 |
1 |
2k |
1 |
2k+1 |
1 |
2 |
1 |
2k+1 |
1 |
2k+1 |
1 |
2 |
| ||||||
2k个 |
=
1 |
2 |
∴当n=k+1时,不等式成立
综①②知对任意的n∈N*,不等式成立.(14分)
点评:本题考查数列的综合应用,解题时要认真审题,仔细解答.
练习册系列答案
相关题目