题目内容
已知数列{an}和{bn}满足a1=m,an+1=λan+n,bn=an-2n |
3 |
4 |
9 |
(1)当m=1时,求证:对于任意的实数λ,{an}一定不是等差数列;
(2)当λ=-
1 |
2 |
分析:(1)要证明{an}不是等差数列,只须证明a1+a3≠2a2,利用反证法即可完成;
(2)要判断{bn}是否为等比数列,只须紧扣等比数列的定义,证明bn+1:bn=同一个常数,注意对b1≠0的讨论.
(2)要判断{bn}是否为等比数列,只须紧扣等比数列的定义,证明bn+1:bn=同一个常数,注意对b1≠0的讨论.
解答:解:(1)当m=1时,a1=1.a2=λ+1,a3=λ(λ+1)+2=λ2+λ+2
假设{an}是等差数列,由a1+a3=2a2,
得λ2+λ+3=2(λ+1),
即λ2-λ+1=0,
∴△=-3<0,
∴方程无实根.
故对于任意的实数λ,{an}一定不是等差数列.
(2)当λ=-
时,an+1=-
an+n,bn=an-
+
bn+1=an+1-
+
=(-
an+n)-
+
=-
an+
-
=-
(an-
+
)=-
bn又b1=m-
+
=m-
,
∴当m≠
时,{bn}是以m-
为首项,-
为公比的等比数列,
当m=
时,{bn}不是等比数列.
假设{an}是等差数列,由a1+a3=2a2,
得λ2+λ+3=2(λ+1),
即λ2-λ+1=0,
∴△=-3<0,
∴方程无实根.
故对于任意的实数λ,{an}一定不是等差数列.
(2)当λ=-
1 |
2 |
1 |
2 |
2n |
3 |
4 |
9 |
2(n+1) |
3 |
4 |
9 |
1 |
2 |
2(n+1) |
3 |
4 |
9 |
1 |
2 |
n |
3 |
2 |
9 |
=-
1 |
2 |
2n |
3 |
4 |
9 |
1 |
2 |
2 |
3 |
4 |
9 |
2 |
9 |
∴当m≠
2 |
9 |
2 |
9 |
1 |
2 |
当m=
2 |
9 |
点评:判断一个数列是等差数列或等比数列的常规方法是根据定义判断,而判断一个数列不是等差数列或等比数列,则只须证明其中的前三项构不成等差或等比关系即可.
练习册系列答案
相关题目