题目内容
【题目】如图,在三棱柱中,已知,分别为线段,的中点,与所成角的大小为90°,且.
求证:(1)平面平面;
(2)平面.
【答案】(1)见解析;(2)见解析
【解析】
(1)推导出,,从而平面,由此能证明平面平面.
(2)取中点,连结,,推导出四边形是平行四边形,从而,由此能证明平面.
证明:(1)因为与所成角的大小为90°,所以⊥,
因为,且N是A1C的中点,所以⊥.
又,、平面,
故⊥平面,
因为平面,所以平面⊥平面.
(2)取AC中点P,连结NP,BP.
因为N为A1C中点,P为AC中点,所以PN//AA1,且PNAA1.
在三棱柱中,BB1 // AA1,且BB1AA1.
又M为BB1中点,故BM // AA1,且BMAA1.
所以PN // BM,且PNBM,于是四边形PNMB是平行四边形,
从而MN // BP.
又平面,平面,
故平面.
练习册系列答案
相关题目
【题目】某人某天的工作是驾车从地出发,到两地办事,最后返回地,,三地之间各路段行驶时间及拥堵概率如下表
路段 | 正常行驶所用时间(小时) | 上午拥堵概率 | 下午拥堵概率 |
1 | 0.3 | 0.6 | |
2 | 0.2 | 0.7 | |
3 | 0.3 | 0.9 |
若在某路段遇到拥堵,则在该路段行驶时间需要延长1小时.
现有如下两个方案:
方案甲:上午从地出发到地办事然后到达地,下午从地办事后返回地;
方案乙:上午从地出发到地办事,下午从地出发到达地,办完事后返回地.
(1)若此人早上8点从地出发,在各地办事及午餐的累积时间为2小时,且采用方案甲,求他当日18点或18点之前能返回地的概率.
(2)甲乙两个方案中,哪个方案有利于办完事后更早返回地?请说明理由.