题目内容

(满分16分)如图:为保护河上古桥,规划建一座新桥,同时设立一个圆形保护区,规划要求,新桥与河岸垂直;保护区的边界为圆心在线段上并与相切的圆,且古桥两端到该圆上任一点的距离均不少于80,经测量,点位于点正北方向60处,点位于点正东方向170处,(为河岸),.

(1)求新桥的长;
(2)当多长时,圆形保护区的面积最大?

(1);(2)

解析试题分析:本题是应用题,我们可用解析法来解决,为此以为原点,以向东,向北为坐标轴建立直角坐标系.(1)点坐标炎,因此要求的长,就要求得点坐标,已知说明直线斜率为,这样直线方程可立即写出,又,故斜率也能得出,这样方程已知,两条直线的交点的坐标随之而得;(2)实质就是圆半径最大,即线段上哪个点到直线的距离最大,为此设,由,圆半径是圆心到直线的距离,而求它的最大值,要考虑条件古桥两端到该圆上任一点的距离均不少于80,列出不等式组,可求得的范围,进而求得最大值.当然本题如果用解三角形的知识也可以解决.
试题解析:

(1)如图,以轴建立直角坐标系,则,由题意,直线方程为.又,故直线方程为,由,解得,即,所以
(2)设,即,由(1)直线的一般方程为,圆的半径为,由题意要求,由于,因此,∴,所以当时,取得最大值,此时圆面积最大.
【考点】解析几何的应用,直线方程,直线交点坐标,两点间的距离,点到直线的距离,直线与圆的位置关系.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网