ÌâÄ¿ÄÚÈÝ
ÈçͼÊÇÒ»·ùÕÐÌù»µÄʾÒâͼ£¬ÆäÖÐABCDÊDZ߳¤Îª2aµÄÕý·½ÐΣ¬ÖÜΧÊÇËĸöÈ«µÈµÄ¹ÐΣ®ÒÑÖªOΪÕý·½ÐεÄÖÐÐÄ£¬GΪADµÄÖе㣬µãPÔÚÖ±ÏßOGÉÏ£¬»¡ADÊÇÒÔPΪԲÐÄ¡¢PAΪ°ë¾¶µÄÔ²µÄÒ»²¿·Ö£¬OGµÄÑÓ³¤Ïß½»»¡ADÓÚµãH£®É軡ADµÄ³¤Îªl£¬¡ÏAPH=¦È£¬¦È¡Ê(
£¬
)£®£¨1£©Çól¹ØÓڦȵĺ¯Êý¹Øϵʽ£»£¨2£©¶¨Òå±ÈÖµ
ΪÕÐÌù»µÄÓÅÃÀϵÊý£¬µ±ÓÅÃÀϵÊý×î´óʱ£¬ÕÐÌù»×îÓÅÃÀ£®Ö¤Ã÷£ºµ±½Ç¦ÈÂú×㣺¦È=tan(¦È-
)ʱ£¬ÕÐÌù»×îÓÅÃÀ£®
¦Ð |
4 |
3¦Ð |
4 |
OP |
l |
¦Ð |
4 |
·ÖÎö£º£¨1£©ÏȶԦÈËùÔÚ·¶Î§·ÖÇé¿öÇó½â£¬×îºó×ۺϼ´¿É£»
£¨2£©Ïȸù¾ÝÌõ¼þÇó³öOP=a-
£¬¦È¡Ê£¨
£¬
£©£»½ø¶øµÃµ½
=
£¬È»ºó½èÖúÓÚÁ½´ÎÇóµ¼Çó³öº¯ÊýµÄ×î´óÖµµã¼´¿ÉµÃµ½½áÂÛ£®
£¨2£©Ïȸù¾ÝÌõ¼þÇó³öOP=a-
acos¦È |
sin¦È |
¦Ð |
4 |
3¦Ð |
4 |
OP |
L |
sin¦È-cos¦È |
2¦È |
½â´ð£º½â£º£¨1£©µ±¦È¡Ê£¨
£¬
£©Ê±£¬µãPÔÚÏ߶ÎOGÉÏ£¬AP=
£»
µ±¦È¡Ê£¨
£¬
£©Ê±£¬µãPÔÚÏ߶ÎGHÉÏ£¬AP=
=
£»
µ±¦È=
ʱ£¬AP=a£®
×ÛÉÏËùÊöAP=
£¬¦È¡Ê£¨
£¬
£©£¬
ËùÒÔ£¬»¡ADµÄ³¤L=AP•2¦È=
£®
¹ÊËùÇóº¯Êý¹ØϵʽΪL=
£¬¦È¡Ê£¨
£¬
£©£®
£¨2£©Ö¤Ã÷£ºµ±¦È¡Ê£¨
£¬
£©Ê±£¬OP=OG-PG=a-
=a-
£»
µ±¦È¡Ê£¨
£¬
£©Ê±£¬OP=OG+GH=a+
=a-
=a-
£»
µ±¦È=
ʱ£¬OP=a£®
ËùÒÔ£¬OP=a-
£¬¦È¡Ê£¨
£¬
£©£®
´Ó¶ø£¬
=
£¬¦È¡Ê£¨
£¬
£©£®
¼Çf£¨¦È£©=
£¬¦È¡Ê£¨
£¬
£©£®
Ôòf¡ä£¨¦È£©=
Áîf¡ä£¨¦È£©=0µÃ¦È£¨cos¦È+sin¦È£©=sin¦È-cos¦È
ÒòΪ¦È¡Ê£¨
£¬
£©ËùÒÔcos¦È+sin¦È¡Ù0£¬´Ó¶ø¦È=
£¬
ÏÔÈ»¦È¡Ù
£¬ËùÒÔ¦È=
=
=tan£¨¦È-
£©
¼ÇÂú×ã¦È=tan£¨¦È-
£©µÄ¦È=¦È0£®ÏÂÃæÖ¤Ã÷¦È0ÊǺ¯Êýf£¨¦È£©µÄ¼«Öµµã£®
Éèg£¨¦È£©=¦È£¨cos¦È+sin¦È£©-£¨sin¦È-cos¦È£©£¬¦È¡Ê£¨
£¬
£©£¬
Ôòg¡ä£¨¦È£©=¦È£¨cos¦È-sin¦È£©£¼0ÉϦȡʣ¨
£¬
£©ºã³ÉÁ¢£®
´Ó¶øg£¨¦È£©Ôڦȡʣ¨
£¬
£©Éϵ¥µ÷µÝ¼õ£¬
ËùÒÔ£¬µ±¦È¡Ê£¨
£¬¦È0£©Ê±g£¨¦È£©£¾0£¬¼´f¡ä£¨¦È£©£¾0£¬f£¨¦È£©ÔÚ£¨
£¬¦È0£©Éϵ¥µ÷µÝÔö£¬
µ±¦È¡Ê£¨¦È0£¬
£©Ê±£¬g£¨¦È£©£¼0£¬¼´f¡ä£¨¦È£©£¼0£¬f£¨¦È£©ÔÚ£¨¦È0£¬
£©Éϵ¥µ÷µÝ¼õ£®
¹Êf£¨¦È£©ÔÚ¦È=¦È0£®´¦È¡µÃ¼«´óÖµÒ²ÊÇ×î´óÖµ£®
ËùÒÔ£ºµ±¦ÈÂú×ã¦È=tan£¨¦È-
£©Ê±£¬º¯Êýf£¨¦È£©¼´
È¡µÃ×î´óÖµ£¬´ËʱÕÐÌù»×îÓÅÃÀ£®
¦Ð |
4 |
¦Ð |
2 |
a |
sin¦È |
µ±¦È¡Ê£¨
¦Ð |
2 |
3¦Ð |
4 |
a |
sin(¦Ð-¦È) |
a |
sin¦È |
µ±¦È=
¦Ð |
2 |
×ÛÉÏËùÊöAP=
a |
sin¦È |
¦Ð |
4 |
3¦Ð |
4 |
ËùÒÔ£¬»¡ADµÄ³¤L=AP•2¦È=
2a¦È |
sin¦È |
¹ÊËùÇóº¯Êý¹ØϵʽΪL=
2a¦È |
sin¦È |
¦Ð |
4 |
3¦Ð |
4 |
£¨2£©Ö¤Ã÷£ºµ±¦È¡Ê£¨
¦Ð |
4 |
¦Ð |
2 |
a |
tan¦È |
acos¦È |
sin¦È |
µ±¦È¡Ê£¨
¦Ð |
2 |
3¦Ð |
4 |
a |
tan(¦Ð-¦È) |
a |
tan¦È |
acos¦È |
sin¦È |
µ±¦È=
¦Ð |
2 |
ËùÒÔ£¬OP=a-
acos¦È |
sin¦È |
¦Ð |
4 |
3¦Ð |
4 |
´Ó¶ø£¬
OP |
L |
sin¦È-cos¦È |
2¦È |
¦Ð |
4 |
3¦Ð |
4 |
¼Çf£¨¦È£©=
sin¦È-cos¦È |
2¦È |
¦Ð |
4 |
3¦Ð |
4 |
Ôòf¡ä£¨¦È£©=
¦È(cos¦È+sin¦È)-(sin¦È-cos¦È) |
2¦È2 |
Áîf¡ä£¨¦È£©=0µÃ¦È£¨cos¦È+sin¦È£©=sin¦È-cos¦È
ÒòΪ¦È¡Ê£¨
¦Ð |
4 |
3¦Ð |
4 |
sin¦È-cos¦È |
sin¦È+cos¦È |
ÏÔÈ»¦È¡Ù
¦Ð |
2 |
sin¦È-cos¦È |
sin¦È+cos¦È |
tan¦È-1 |
tan¦È+1 |
¦Ð |
4 |
¼ÇÂú×ã¦È=tan£¨¦È-
¦Ð |
4 |
Éèg£¨¦È£©=¦È£¨cos¦È+sin¦È£©-£¨sin¦È-cos¦È£©£¬¦È¡Ê£¨
¦Ð |
4 |
3¦Ð |
4 |
Ôòg¡ä£¨¦È£©=¦È£¨cos¦È-sin¦È£©£¼0ÉϦȡʣ¨
¦Ð |
4 |
3¦Ð |
4 |
´Ó¶øg£¨¦È£©Ôڦȡʣ¨
¦Ð |
4 |
3¦Ð |
4 |
ËùÒÔ£¬µ±¦È¡Ê£¨
¦Ð |
4 |
¦Ð |
4 |
µ±¦È¡Ê£¨¦È0£¬
3¦Ð |
4 |
3¦Ð |
4 |
¹Êf£¨¦È£©ÔÚ¦È=¦È0£®´¦È¡µÃ¼«´óÖµÒ²ÊÇ×î´óÖµ£®
ËùÒÔ£ºµ±¦ÈÂú×ã¦È=tan£¨¦È-
¦Ð |
4 |
OP |
L |
µãÆÀ£º±¾ÌâÖ÷Òª¿¼²ì½âÈý½ÇÐÎÔÚÉú»îÖеÄÓ¦ÓÃÎÊÌ⣮½â¾ö±¾ÌâµÄµÚ¶þÎÊʱÉæ¼°µ½ÁËÁ½´ÎÇóµ¼À´Çóº¯ÊýµÄ×îÖµ£¬ÄѶȽϴó£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿