题目内容
【题目】已知数列{an}的前n项和为Sn,且满足Sn+n=2an(n∈N*).
(1)证明:数列{an+1}为等比数列,并求数列{an}的通项公式;
(2)若bn=(2n+1)an+2n+1,数列{bn}的前n项和为Tn.求满足不等式>2010的n的最小值.
【答案】(1)an=2n-1,n∈N*;(2)n的最小值为10.
【解析】试题分析:本题属于基础题.对已知条件,用
代替
得
,两式相减可得
,凑配得
,由此可证得
是等比数列,从而求出通项公式,这是已知数列前
项和与项之间关系的一般处理方法;(2)由(1)可得
,采用错位相减法可求出其前
项和
,不等式>2 010就转化为
,可知n的最小值是10.
试题解析:(1)因为Sn+n=2an,所以Sn-1=2an-1-(n-1)(n≥2,n∈N*).两式相减,得an=2an-1+1.
所以an+1=2(an-1+1)(n≥2,n∈N*),所以数列{an+1}为等比数列.
因为Sn+n=2an,令n=1得a1=1.
a1+1=2,所以an+1=2n,所以an=2n-1.
(2)因为bn=(2n+1)an+2n+1,所以bn=(2n+1)·2n.
所以Tn=3×2+5×22+7×23+…+(2n-1)·2n-1+(2n+1)·2n, ①
2Tn=3×22+5×23+…+(2n-1)·2n+(2n+1)·2n+1, ②
①-②,得-Tn=3×2+2(22+23+…+2n)-(2n+1)·2n+1
=6+2×-(2n+1)·2n+1
=-2+2n+2-(2n+1)·2n+1=-2-(2n-1)·2n+1.
所以Tn=2+(2n-1)·2n+1.
若>2 010,
则>2 010,即2n+1>2 010.
由于210=1 024,211=2 048,所以n+1≥11,即n≥10.
所以满足不等式>2 010的n的最小值是10.
![](http://thumb.zyjl.cn/images/loading.gif)