题目内容

1
-1
(1+
1-x2
)dx=
4+π
2
4+π
2
分析:
1
-1
(1+
1-x2
)dx
=
1
-1
1dx
+∫
1
-1
1-x2
dx
,因为第一个积分根据积分所表示的几何意义是以(0,0)为圆心,1为半径第一、二象限内圆弧与坐标轴围成的面积,只需求出圆的面积乘以二分之一即可,第二个积分利用公式进行计算即可.
解答:解:∵
1
-1
(1+
1-x2
)dx
=
1
-1
1dx
+∫
1
-1
1-x2
dx

1
-1
1-x2
dx
表示的几何意义是:
以(0,0)为圆心,1为半径第一,二象限内圆弧与坐标轴围成的面积
的一半,∴
1
-1
1-x2
dx
=
1
2
×π×12=
π
2

1
-1
1dx
=x
|
1
-1
=1-(-1)=2,
1
-1
(1+
1-x2
)dx
=
1
-1
1dx
+∫
1
-1
1-x2
dx
=2+
π
2
=
4+π
2

故答案为:
4+π
2
点评:本题主要考查了定积分,定积分运算是求导的逆运算,解题的关键是求原函数,也可利用几何意义进行求解,属于基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网