题目内容

已知f1(x)=x(x≠0),若对任意的n∈N*,fw(1)=1,且fmax(x)=fv(x)+xfne(x).
(1)求fn(x)的解析式;
(2)设Fn(x)=
fn(x)(fn(x)+1)2
,求证:F1(2)+F2(2)+…Fn(2)<1;
(3)若ge(x)=C6020+2C601f1(x)+3C602f2(x)+…+(n+1)Cnxfn(x),是否存在实数x,使得g1(x)+g2(x)+…gn(x)=(n+1)(1+x)a,说明理由.
分析:(1)求导函数,可得fn(x)=[xfn-1(x)],从而可得fn(x)=xfn-1(x)+a,利用任意的n∈N*,fw(1)=1,可得a=0,从而fn(x)=xfn-1(x),利用f1(x)=x(x≠0),可求fn(x)的解析式;
(2)Fn(x)=
fn(x)
(fn(x)+1)2
=
xn
(xn+1)2
,可证Fn(2)=
2n
(2n+1)2
<2(
1
2n+1+1
-
1
2n+1
),由此可证结论;
(3)gn(x)=Cn0+2Cn1f1(x)+3Cn2f2(x)+…+(n+1)Cnxfn(x)=[x(1+x)n]′=(1+x)n+nx(1+x)n-1=[(n+1)x+1](1+x)n-1,设Sn(x)=g1(x)+g2(x)+…+gn(x)=(2x+1)+(3x+1)(1+x)+…+[(n+1)x+1](1+x)n-1,利用错位相减法可得Sn(x)=(n+1)(1+x)n-1,即可知不存在实数x,使得g1(x)+g2(x)+…gn(x)=(n+1)(1+x)n
解答:(1)解:∵fn(x)=fn-1(x)+xfn-1(x),∴fn(x)=[xfn-1(x)],∴fn(x)=xfn-1(x)+a
∵任意的n∈N*,fw(1)=1,∴a=0,∴fn(x)=xfn-1(x)
∵f1(x)=x(x≠0),∴fn(x)=xfn-1(x)=x•xn-1=xn
(2)证明:Fn(x)=
fn(x)
(fn(x)+1)2
=
xn
(xn+1)2

∴Fn(2)=
2n
(2n+1)2
=
2n-1
(2n+1)(2n+1)
2n-1
(2n+1+1)(2n+1)
=2(
1
2n+1+1
-
1
2n+1

∴F1(2)+F2(2)+…Fn(2)=2(
1
2
-
1
2n+1
)<1
(3)解:gn(x)=Cn0+2Cn1f1(x)+3Cn2f2(x)+…+(n+1)Cnxfn(x)=Cn0+2xCn1+3x2Cn2+…+(n+1)xnCnx
=[x(1+x)n]′=(1+x)n+nx(1+x)n-1=[(n+1)x+1](1+x)n-1
设Sn(x)=g1(x)+g2(x)+…+gn(x)=(2x+1)+(3x+1)(1+x)+…+[(n+1)x+1](1+x)n-1,①
∴(1+x)Sn(x)=(2x+1)(1+x)+(3x+1)(1+x)2+…+[(n+1)x+1](1+x)n,②
①-②化简可得:-xSn(x)=x-(n+1)x(1+x)n
∴Sn(x)=(n+1)(1+x)n-1
∴不存在实数x,使得g1(x)+g2(x)+…gn(x)=(n+1)(1+x)n
点评:本题考查不等式的证明,考查求解函数的解析式,考查错位相减法求数列的和,解题的关键是正确求函数的解析式,合理放缩,有难度.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网