题目内容
已知y=f(x)在定义域(-1,1)上是减函数,且f(1-a)<f(2a-1),则a的取值范围是________.
已知:如图射线OA为y=kx(k>0,x>0),射线OB为y=-kx(x>0),动点P(x,y)在∠AOx的内部,PM⊥OA于M,PN⊥OB于N,四边形ONPM的面积恰为k.
(Ⅰ)当k为定值时,动点P的纵坐标y是其横坐标x的函数,求这个函数y=f(x)的解析式;
(Ⅱ)根据k的取值范围,确定y=f(x)的定义域.
已知函数y=f(x)是偶函数,y=g(x)是奇函数,它们的定域[-π,π],且它们在x∈[0,π]上的图象如图所示,则不等式<0的解集是________.
如图,已知直线l:x=my+1过椭圆C:=1的右焦点F,抛物线:x2=4y的焦点为椭圆C的上顶点,且直线l交椭圆C于A、B两点,点A、F、B在直线g:x=4上的射影依次为点D、K、E.
(Ⅰ)求椭圆C的方程;
(Ⅱ)若直线l交y轴于点M,且,当m变化时,探求λ1+λ2的值是否为定值?若是,求出λ1+λ2的值,否则,说明理由;
(Ⅲ)连接AE、BD,试证明当m变化时,直线AE与BD相交于定点N.
已知f(x)=(x∈R),P1(x1,y1)、P2(x2,y2)是函数y=f(x)图象上两点,且线段P1P2中点P的横坐标是.
(1)求证:点P的纵坐标是定值;
(2)若数列{an}的通项公式是an=f()(m∈N*,n=1,2,…m),求数列{an}的前m项和Sm;
(3)在(2)的条件下,若m∈N*时,不等式恒成立,求实数a的取值范围.
已知椭圆C的中心在原点,焦点在x轴上,离心率等于,它的一个顶点恰好是抛物线y=x2的焦点,
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)过椭圆C的右焦点F作直线l交椭圆C于A、B两点,交y轴于M点,若=λ1,=λ2,求证:λ1+λ2为定值.