题目内容
(本小题满分12分)
如图5,在圆锥中,已知=,⊙O的直径,是的中点,为的中点.
(Ⅰ)证明:平面 平面;
(Ⅱ)求二面角的余弦值。
解法1:连结OC,因为
又底面⊙O,AC底面⊙O,所以,
因为OD,PO是平面POD内的两条相交直线,所以平面POD,
而平面PAC,所以平面POD平面PAC。
(II)在平面POD中,过O作于H,由(I)知,平面
所以平面PAC,又面PAC,所以
在平面PAO中,过O作于G,
连接HG,
则有平面OGH,
从而,故为二面角B—PA—C的平面角。
在
在
在
在
所以
故二面角B—PA—C的余弦值为
解法2:(I)如图所示,以O为坐标原点,OB、OC、OP所在直线分别为x轴、y轴,z轴建立空间直角坐标系,则
,
设是平面POD的一个法向量,
则由,得
所以
设是平面PAC的一个法向量,
则由,
得
所以
得。
因为
所以从而平面平面PAC。
(II)因为y轴平面PAB,所以平面PAB的一个法向量为
由(I)知,平面PAC的一个法向量为
设向量的夹角为,则
由图可知,二面角B—PA—C的平面角与相等,
所以二面角B—PA—C的余弦值为
练习册系列答案
相关题目