题目内容
【题目】已知数列{an}的前n项和为Sn,且a1=1,an+1=Sn(n=1,2,3,…).
(1)求数列{an}的通项公式;
(2)当bn= (3an+1)时,求证:数列的前n项和Tn=.
【答案】(1)(2)见解析
【解析】
(1)由项和公式得到an+1=an(n≥2),得到数列{an}是以a2为首项,以为公比的等比数列,再写出数列{an}的通项公式.(2)利用裂项相消法求数列的前n项和Tn=.
解:(1)由已知 (n≥2),
得an+1=an(n≥2).
∴数列{an}是以a2为首项,以为公比的等比数列.
又a2=S1=a1=,
∴an=a2× (n≥2).
∴an=
(2)证明:bn=log (3an+1)=log=n.
∴==-,
∴Tn=+++…+
=+++…+
=1-=.
练习册系列答案
相关题目
【题目】现对某市工薪阶层关于“楼市限购令”的态度进行调查,随机抽调了50人,他们月收入的频数分布及对“楼市限购令”赞成人数如下表.
月收入(单位百元) | [15,25 | [25,35 | [35,45 | [45,55 | [55,65 | [65,75 |
频数 | 5 | 10 | 15 | 10 | 5 | 5 |
赞成人数 | 4 | 8 | 12 | 5 | 2 | 1 |
(1)由以上统计数据求下面22列联表中的的值,并问是否有99%的把握认为“月收入以5500为分界点对“楼市限购令” 的态度有差异;
月收入低于55百元的人数 | 月收入不低于55百元的人数 | 合计 | |
赞成 | a | b | |
不赞成 | c | d | |
合计 | 50 |
(2)若对在[55,65)内的被调查者中随机选取两人进行追踪调查,记选中的2人中不赞成“楼市限购令”的人数为,求的概率.
附:,
0.10 | 0.05 | 0.025 | 0.010 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 10.828 |