题目内容

已知圆O:x2+y2=1,点P在直线x=
3
上,O为坐标原点,若圆O上存在点Q,使∠OPQ=30°,则点P的纵坐标y0的取值范围是(  )
分析:圆O外有一点P,圆上有一动点Q,∠OPQ在PQ与圆相切时取得最大值.如果OP变长,那么∠OPQ可以获得的最大值将变小.可以得知,当∠OPQ=30°,且PQ与圆相切时,PO=2,而当PO>2时,Q在圆上任意移动,∠OPQ<30°恒成立.因此满足PO≤2,就能保证一定存在点Q,使得∠OPQ=30°,否则,这样的点Q是不存在的;接下来进行计算:根据两点间的距离公式表示出OP的长,再把P的坐标代入已知的直线方程中,用y0表示出x0,代入到表示出OP的长中,根据PO2≤4列出关于y0的不等式,求出不等式的解集即可得到y0的范围.
解答:解:由分析可得:PO2=x02+y02
又因为点P在直线x=
3
上,所以x0=
3

由分析可知PO≤2,所以PO2≤4,即3+y02≤4,变形得:y02≤1,解得:-1≤y0≤1,
即y0的取值范围是[-1,1].
故选C.
点评:本题考查点与圆的位置关系,以及函数的定义域及其求法.解题的关键是结合图形,利用几何知识,判断出PO≤2,从而得到不等式求出参数的取值范围.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网