题目内容

(2012•德州一模)已知函数f(x)=
3
sinxcosx-cos2x+
1
2
(x∈R)

(I)求函数f(x)的最小正周期及在区间[0,
π
2
]
上的值域;
(Ⅱ)在△ABC中,角A、B、C所对的边分别是a、b、c,又f(
A
2
+
π
3
)=
4
5
,b=2,△ABC
的面积等于3,求边长a的值.
分析:(Ⅰ)直接利用二倍角公式以及两角差的正弦函数化简函数的表达式,求出函数的周期,根据x的范围求出2x-
π
6
的范围,集合正弦函数的值域求出所求函数的值域.
(Ⅱ)根据题目的条件,求出cosA,sinA以及c的值,通过余弦定理求解即可得到a的值.
解答:解:(Ⅰ)因为函数f(x)=
3
sinxcosx-cos2x+
1
2
=sin(2x-
π
6
),
故f(x)的最小正周期为π,x∈[0,
π
2
]
时,2x-
π
6
∈[-
π
6
6
]

所求函数的值域为[-
1
2
,1]

(Ⅱ)∵f(
A
2
+
π
3
)=
4
5
,∴cosA=
4
5
,∴sinA=
3
5

∵S=
1
2
bcsinA
,b=2,sinA=
3
5

∴c×
3
5
=3
,∴c=5
由余弦定理a2=b2+c2-2bccosA=4+25-2×2×5×
4
5
=13,
∴a=
13
点评:本题考查两角和与差的三角函数,二倍角公式的应用,余弦定理的应用,考查计算能力.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网