题目内容
【题目】已知函数.
(1)讨论函数的单调性;
(2)若函数有两个极值点,且不等式恒成立,求实数的取值范围.
【答案】(1)当时,在单调递增,当时,在单调递减,在单调递增,当时,在,单调递增,在单调递减;(2).
【解析】
试题(1)求出f(x)的导数,令f'(x)=0,得,对判别式讨论,即当时,令导数大于0,得增区间,令导数小于0,得减区间;
(2)函数f(x)在(0,+∞)上有两个极值点,由(1)可得不等式恒成立即为,求得,令,求出导数,判断单调性,即可得到g(x)的范围,即可求得m的范围.
试题解析:(1),记,
当即时,,在单调递增;
当即时,由得
若则,,在单调递减,在单调递增
若则,,在,单调递增,在单调递减
(2)恒成立等价于
由(1)可知,若函数有两个极值点,则且
是方程的两个根,故,
令,
则
,,,
在上单调递减,
故实数的取值范围是.
【题目】某景区的各景点从2009年取消门票实行免费开放后,旅游的人数不断地增加,不仅带动了该市淡季的旅游,而且优化了旅游产业的结构,促进了该市旅游向“观光、休闲、会展”三轮驱动的理想结构快速转变.下表是从2009年至2018年,该景点的旅游人数(万人)与年份的数据:
第年 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
旅游人数(万人) | 300 | 283 | 321 | 345 | 372 | 435 | 486 | 527 | 622 | 800 |
该景点为了预测2021年的旅游人数,建立了与的两个回归模型:
模型①:由最小二乘法公式求得与的线性回归方程;
模型②:由散点图的样本点分布,可以认为样本点集中在曲线的附近.
(1)根据表中数据,求模型②的回归方程.(精确到个位,精确到0.01).
(2)根据下列表中的数据,比较两种模型的相关指数,并选择拟合精度更高、更可靠的模型,预测2021年该景区的旅游人数(单位:万人,精确到个位).
回归方程 | ① | ② |
30407 | 14607 |
参考公式、参考数据及说明:
①对于一组数据,其回归直线的斜率和截距的最小二乘法估计分别为.②刻画回归效果的相关指数;③参考数据:,.
5.5 | 449 | 6.05 | 83 | 4195 | 9.00 |
表中.
【题目】某制造商月生产了一批乒乓球,随机抽样个进行检查,测得每个球的直径(单位:mm),将数据分组如下表
分组 | 频数 | 频率 |
| 10 | |
20 | ||
50 | ||
20 | ||
合计 | 100 |
(1)请在上表中补充完成频率分布表(结果保留两位小数),并在上图中画出频率分布直方图;
(2)统计方法中,同一组数据常用该组区间的中点值(例如区间的中点值是)作为代表.据此估计这批乒乓球直径的平均值(结果保留两位小数).