题目内容
如图,正方体ABCD-A1B1C1D1的棱长为1,点M∈AB1,N∈BC1,且AM=BN≠,有以下四个结论:
①AA1⊥MN;②A1C1∥MN;③MN∥平面A1B1C1D1;④MN与A1C1是异面直线.其中正确命题的序号是________.(注:把你认为正确命题的序号都填上)
①③
【解析】过N作NP⊥BB1于点P,连接MP,可证AA1⊥平面MNP,得AA1⊥MN,①正确;过M,N分别作MR⊥A1B1,NS⊥B1C1于点R,S,则当M不是AB1的中点,N不是BC1的中点时,直线A1C1与直线RS相交;当M,N分别是AB1,BC1的中点时,A1C1∥RS,所以A1C1与MN可以异面,也可以平行,故②④错误;由①正确知,AA1⊥平面MNP,而AA1⊥平面A1B1C1D1,所以平面MNP∥平面A1B1C1D1,故③正确.
练习册系列答案
相关题目