题目内容

如图,在直角梯形ABCD中,已知BC∥AD,AB⊥AD,AB=4,BC=2,AD=4,若P为CD的中点,则
PA
PB
的值为
5
5
分析:由题意可得 cos∠PDA=
5
5
,再由
PA
PB
=(
PD
+
DA
)•(
PC
+
CB
)=(
PD
+2
CB
)•(-
PD
+
CB
),利用两个向量的数量积的定义运算求得结果.
解答:解:由题意可得tan∠PDA=2,cos∠PDA=
5
5
DA
=2
CB
PD
=-
PC
,|
PD
|=|
PC
|=
1
2
16+4
=
5

PA
PB
=(
PD
+
DA
 )•(
PC
+
CB
)=(
PD
+2
CB
)•(-
PD
+
CB

=-
PD
2
-
PD
CB
+2
CB
2
=-5-
5
×2 cos(π-∠PDA)+2×4
=-5-
5
×2×(-
5
5
)+8=5,
故答案为 5.
点评:本题主要考查两个向量的加减法的法则,以及其几何意义,两个向量的数量积的定义,属于基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网