题目内容

14.已知正四面棱锥P-ABCD的侧棱长为2$\sqrt{3}$,侧面等腰三角形的顶角为30°,则从A点出发环绕面一周后回到A点的最短路程为(  )
A.2$\sqrt{6}$B.2$\sqrt{3}$C.$\sqrt{6}$D.6

分析 用空间思维将此正四棱锥的侧面展开,得到一个由四个全等的顶角为30°的等腰三角形组成的图形,所求的路径,是一个以2$\sqrt{3}$为腰长,120°为顶角的三角形的底边,由余弦定理可得最短路程.

解答 解:用空间思维将此正四棱锥的侧面展开,得到一个由四个全等的顶角为30°的等腰三角形组成的图形,
所求的路径,是一个以2$\sqrt{3}$a为腰长,120°为顶角的三角形的底边,
由余弦定理可得最短路程等于$\sqrt{12+12-2•2\sqrt{3}•2\sqrt{3}•(-\frac{1}{2})}$=6.
故选:D.

点评 本题考查正四棱锥的侧面展开图,考查余弦定理,考查学生的计算能力,正确运用正四棱锥的侧面展开图是关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网