题目内容
已知抛物线y2=4x,圆F:(x-1)2+y2=1,过点F作直线l,自上而下顺次与上述两曲线交于点A,B,C,D(如图所示),则|AB|·|CD|的值正确的是( ).
A.等于1 | B.最小值是1 | C.等于4 | D.最大值是4 |
A
解析
练习册系列答案
相关题目
,则方程表示的曲线不可能是( )
A.圆 | B.椭圆 | C.双曲线 | D.抛物线 |
已知F1,F2分别是双曲线-=1(a>0,b>0)的左、右焦点,P为双曲线右支上的任意一点.若=8a,则双曲线的离心率的取值范围是( )
A.(1,2] | B.[2,+∞) |
C.(1,3] | D.[3,+∞) |
设抛物线C:y2=4x的焦点为F,直线l过F且与C交于A,B两点.若|AF|=3|BF|,则l的方程为 ( ).
A.y=x-1或y=-x+1 |
B.y=(x-1)或y=-(x-1) |
C.y=(x-1)或y=-(x-1) |
D.y=(x-1)或y=-(x-1) |
抛物线y2=4x的焦点到双曲线x2-=1的渐近线的距离是( ).
A. | B. | C.1 | D. |
若双曲线=1的离心率为,则其渐近线方程为( ).
A.y=±2x | B.y=±x | C.y=±x | D.y=±x |
已知圆(x-a)2+(y-b)2=r2的圆心为抛物线y2=4x的焦点,且与直线3x+4y+2=0相切,则该圆的方程为( ).
A.(x-1)2+y2= | B.x2+(y-1)2= |
C.(x-1)2+y2=1 | D.x2+(y-1)2=1 |
已知双曲线=1(a>0,b>0)的一个焦点与抛物线y2=4x的焦点重合,且双曲线的离心率等于,则该双曲线的方程为( ).
A.5x2-=1 | B.-=1 |
C.-=1 | D.5x2-=1 |