题目内容

(2009•越秀区模拟)设实数x,y满足
x-y+1≥0
x+y-3≥0
x≤2
,则z=x2+y2的最小值为(  )
分析:本题主要考查线性规划的基本知识,先画出约束条件
x-y+1≥0
x+y-3≥0
x≤2
的可行域,根据z=x2+y2所表示的几何意义,分析图形找出满足条件的点,代入即可求出z=x2+y2的最小值.
解答:解:满足约束条件
x-y+1≥0
x+y-3≥0
x≤2
的可行域如下图示:
又∵z=x2+y2所表示的几何意义为:点到原点距离的平方
由图可得,原点到图中阴影部分中的直线x+y-3=0的距离的平方时,
此时z=x2+y2的最小,最小值为=(
|3|
2
) 2=
9
2

故选B.
点评:平面区域的最值问题是线性规划问题中一类重要题型,在解题时,关键是正确地画出平面区域,分析表达式的几何意义,然后结合数形结合的思想,分析图形,找出满足条件的点的坐标,即可求出答案.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网