题目内容
(本题16分)已知函数
,其中e是自然数的底数,
,
(1)当
时,解不等式
;
(2)若当
时,不等式
恒成立,求a的取值范围;
(3)当
时,试判断:是否存在整数k,使得方程
在![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214848985467.png)
上有解?若存在,请写出所有可能的k的值;若不存在,说明理由。
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214848595791.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214848642431.png)
(1)当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214848751387.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214848767538.png)
(2)若当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214848782455.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214848923908.png)
(3)当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214848938369.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214848970860.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214848985467.png)
上有解?若存在,请写出所有可能的k的值;若不存在,说明理由。
(1)
;(2)
;(3)存在唯一的整数
。
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214849001722.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214849048640.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214849063396.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214849079799.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214849094432.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214849250577.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214848751387.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214848923908.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214849484850.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214849500496.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214849516403.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232148495471002.png)
数形结合:
如图:
若
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214849562398.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214849578887.png)
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232148495943543.png)
若
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214848751387.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232148496254315.png)
(4)方程
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214848970860.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214848985467.png)
上有解,需判断函数在
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214848985467.png)
(1)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214849079799.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214849250577.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214848751387.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214849781725.png)
所以解集为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214849001722.png)
(2)当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214848782455.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214849484850.png)
①若
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214848938369.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214850077452.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214848782455.png)
②由于
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232148495471002.png)
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214850155947.png)
若
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214849562398.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232148501861290.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214850218951.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214850233283.png)
③若
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214848751387.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232148502801059.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214850311929.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214850327647.png)
综上所述,a的取值范围是
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214849048640.png)
(3)方程即为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214850374574.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214850389752.png)
由于
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214850405476.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214850420493.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214850452484.png)
又因为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214850545856.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214850561837.png)
所以该函数的零点在区间
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214850576428.png)
一个零点,所以方程
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214850374574.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214850576428.png)
一的整数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214849063396.png)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目