题目内容

(2012•德阳三模)已知集合A={x|
x-2
x+1
≤0},B={y|y=cosx,x∈R}
.则A∩B为(  )
分析:解分式不等式求出A={x|-1<x≤2},根据余弦函数的值域求出B={y|-1≤y≤1},再根据两个集合的交集的定义
求出 A∩B.
解答:解:A={x|
x-2
x+1
≤0 }={x|-1<x≤2},B={y|y=cosx}={y|-1≤y≤1},
∴A∩B={x|-1<x≤2}∩{x|-1≤x≤1}={x|-1<x≤1},
故选C.
点评:本题主要考查分式不等式的解法,体现了化归与转化的数学思想,两个集合的交集的定义和求法,属于基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网