题目内容
在数列{an}中,a1=1,an+1=an+2n-1,则an的表达式为( )
分析:利用累加求和即可得出.
解答:解:由a1=1,an+1=an+2n-1,可得an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1=2(n-1)-1+2(n-2)-1+…+2×1-1+1
=2×
-(n-1)+1=n2-2n+2.
故选B.
=2×
(n-1)n |
2 |
故选B.
点评:熟练掌握累加求和和等差数列的前n项和公式是解题的关键.
练习册系列答案
相关题目