题目内容

如图所示,已知PA切圆O于A,割线PBC交圆O于B、C,PD⊥AB于D,PD与AO的延长线相交于点E,连接CE并延长交圆O于点F,连接AF.
(1)求证:B,C,E,D四点共圆;
(2)当AB=12,tan∠EAF=
2
3
时,求圆O的半径.
精英家教网

精英家教网
(1)由切割线定理PA2=PB?PC
由已知易得Rt△PADRt△PEA,∴PA2=PD?PE,
∴PA2=PB?PC=PA2=PD?PE,
又∠BPD为公共角,∴△PBD△PEC,
∴∠BDP=∠C
∴B,C,E,D四点共圆              
(2)作OG⊥AB于G,由(1)知∠PBD=∠PEC,
∵∠PBD=∠F,∴∠F=∠PEC,
∴PEAF.
∵AB=12,∴AG=6.
∵PD⊥AB,∴PDOG.
∴PEOGAF,
∴∠AOG=∠EAF.
在Rt△AOG中,tan∠AOG=tan∠EAF=
2
3
=
6
OG

OG=9∴R=AO=
AG2+OG2
=3
13

∴圆O的半径3
13
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网