题目内容

已知一次函数f(x)的图象关于直线y=x对称的图象为C,且f[f(1)]=-1,若点(n,
an+1
an
)(n∈N+)
在曲线C上,并有a1=1,
an+1
an
-
an
an-1
=1(n≥2)

(1)求f(x)的解析式及曲线C的方程;
(2)求数列{an}的通项公式;
(3)设bn=
an
(n+2)!
,求证:数列{bn}的前n项和Sn
1
2
(1)设f(x)=kx+b(k≠0)(1分)
则f[f(1)]=k(k+b)+b=k2+kb+b=-1即k2+kb+b+1=0①(2分)
f-1(x)=
x
k
-
b
k
是曲线C的解析式.
∵点(n,
an+1
an
)
在曲线C上,
f-1(n)-f-1(n-1)=
an+1
an
-
an
an-1
=1

又∵f-1(n)-f-1(n-1)=
1
k
1
k
=1,∴k=1
,代入①得b=-1
∴f(x)=x-1,f-1(x)=x+1∴曲线C的方程是x-y+1=0(5分)

(2)由(1)知当x=n时,f-1(n)=n+1故
an+1
an
=n+1
,而a1=1,
于是an=
an
an-1
an-1
an-2
a2
a1
a1=n•(n-1)
3•2•1=n!(10分)

(3)∵bn=
an
(n+2)!
=
n!
(n+2)!
=
1
(n+2)(n+1)
=
1
n+1
-
1
n+2

∴Sn=b1+b2++bn=(
1
2
-
1
3
)+(
1
3
-
1
4
)+
+(
1
n+1
-
1
n+2
)
=
1
2
-
1
n+2
1
2
(14分)
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网